Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Am J Physiol Endocrinol Metab ; 327(1): E1-E12, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690939

RESUMO

High levels of testosterone (Testo) are associated with cardiovascular risk by increasing reactive oxygen species (ROS) formation. NADPH oxidases (NOX) are the major source of ROS in the vasculature of cardiovascular diseases. NOX4 is a unique isotype, which produces hydrogen peroxide (H2O2), and its participation in cardiovascular biology is controversial. So far, it is unclear whether NOX4 protects from Testo-induced endothelial injury. Thus, we hypothesized that supraphysiological levels of Testo induce endothelial NOX4 expression to attenuate endothelial injury. Human mesenteric vascular endothelial cells (HMECs) and human umbilical vein endothelial cells (HUVEC) were treated with Testo (10-7 M) with or without a NOX4 inhibitor [GLX351322 (10-4 M)] or NOX4 siRNA. In vivo, 10-wk-old C57Bl/6J male mice were treated with Testo (10 mg/kg) for 30 days to study endothelial function. Testo increased mRNA and protein levels of NOX4 in HMECs and HUVECs. Testo increased superoxide anion (O2-) and H2O2 production, which were abolished by NOX1 and NOX4 inhibition, respectively. Testo also attenuated bradykinin-induced NO production, which was further impaired by NOX4 inhibition. In vivo, Testo decreased H2O2 production in aortic segments and triggered endothelial dysfunction [decreased relaxation to acetylcholine (ACh)], which was further impaired by GLX351322 and by a superoxide dismutase and catalase mimetic (EUK134). Finally, Testo led to a dysregulated endothelial cell migration, which was exacerbated by GLX351322. These data indicate that supraphysiological levels of Testo increase the endothelial expression and activity of NOX4 to counterbalance the deleterious effects caused by Testo in endothelial function.NEW & NOTEWORTHY By inducing ROS formation, high levels of testosterone play a major role in the pathogenesis of cardiovascular disease. NOXs are the major sources of ROS in the vasculature of cardiovascular diseases. Herein, we describe a novel compensatory mechanism by showing that NOX4 is a protective oxidant enzyme and counterbalances the deleterious effects of testosterone in endothelial cells by modulating hydrogen peroxide formation.


Assuntos
Movimento Celular , Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio , Camundongos Endogâmicos C57BL , NADPH Oxidase 4 , Testosterona , Animais , Humanos , Masculino , Camundongos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio/metabolismo , Testosterona/farmacologia , Testosterona/metabolismo
2.
Am J Physiol Endocrinol Metab ; 326(5): E555-E566, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446637

RESUMO

Prenatal exposure to maternal diabetes has been recognized as a significant cardiovascular risk factor, increasing the susceptibility to the emergence of conditions such as high blood pressure, atherosclerosis, and heart disease in later stages of life. However, it is unclear if offspring exposed to diabetes in utero have worse vascular outcomes on a high-salt (HS) diet. To test the hypothesis that in utero exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, we treated adult male wild-type offspring (DM_Exp, 6 mo old) of diabetic Ins2+/C96Y mice (Akita mice) with HS (8% sodium chloride, 10 days) and analyzed endothelial function via wire myograph and cyclooxygenase (COX)-derived prostanoids pathway by ELISA, quantitative PCR, and immunochemistry. On a regular diet, DM_Exp mice did not manifest any vascular dysfunction, remodeling, or inflammation. However, HS increased aortic contractility to phenylephrine and induced endothelial dysfunction (analyzed by acetylcholine-induced endothelium-dependent relaxation), vascular hydrogen peroxide production, COX2 expression, and prostaglandin E2 (PGE2) overproduction. Interestingly, ex vivo antioxidant treatment (tempol) or COX1/2 (indomethacin) or COX2 (NS398) inhibitors improved or reverted the endothelial dysfunction in DM_Exp mice fed a HS diet. Finally, DM_Exp mice fed with HS exhibited greater circulating cytokines and chemokines accompanied by vascular inflammation. In summary, our findings indicate that prenatal exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, primarily through the induction of oxidative stress and the generation of COX2-derived PGE2. This supports the concept that in utero exposure to maternal diabetes is a cardiovascular risk factor in adulthood.NEW & NOTEWORTHY Using a unique mouse model of prenatal exposure to maternal type 1 diabetes, our study demonstrates the novel observation that prenatal exposure to maternal diabetes results in a predisposition to high-salt (HS) dietary-induced vascular dysfunction and inflammation in adulthood. Mechanistically, we demonstrated that in utero exposure to maternal diabetes and HS intake induces vascular oxidative stress, cyclooxygenase-derived prostaglandin E2, and inflammation.


Assuntos
Diabetes Gestacional , Endotélio Vascular , Efeitos Tardios da Exposição Pré-Natal , Prostaglandinas , Animais , Feminino , Camundongos , Gravidez , Ciclo-Oxigenase 2/metabolismo , Diabetes Gestacional/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Inflamação/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Prostaglandinas/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo
3.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681637

RESUMO

People living with human immunodeficiency virus (HIV) (PLWH) have increased risk for atherosclerosis-related cardiovascular disease (CVD), the main cause of death in this population. Notwithstanding, the mechanisms of HIV-associated vascular pathogenesis are not fully elucidated. Therefore, we sought to determine whether HIV-regulatory protein Tat mediates HIV-induced endothelial dysfunction via NADPH oxidase 1 (Nox1)-dependent mechanisms. Body weight, fat mass, leptin levels, expression of reactive oxygen species (ROS)-producing enzymes and vascular function were assessed in C57BL/6 male mice treated with Tat for 3 days and 4 weeks. Aortic rings and human endothelial cells were also treated with Tat for 2-24 h in ex vivo and in vitro settings. Chronic (4 weeks) but not acute (3 days and 2-24 h) treatment with Tat decreased body weight, fat mass, and leptin levels and increased the expression of Nox1 and its coactivator NADPH oxidase Activator 1 (NoxA1). This was associated with impaired endothelium-dependent vasorelaxation. Importantly, specific inhibition of Nox1 with GKT771 and chronic leptin infusion restored endothelial function in Tat-treated mice. These data rule out direct effects of HIV-Tat on endothelial function and imply the contribution of reductions in adipose mass and leptin production which likely explain upregulated expression of Nox1 and NoxA1. The Nox1 and leptin system may provide potential targets to improve vascular function in HIV infection-associated CVD.


Assuntos
Tecido Adiposo/fisiologia , Endotélio Vascular/efeitos dos fármacos , NADPH Oxidase 1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Leptina/sangue , Leptina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 1/antagonistas & inibidores , NADPH Oxidase 1/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638939

RESUMO

The adipokine leptin, which is best-known for its role in the control of metabolic function, is also a master regulator of cardiovascular function. While leptin has been approved for the treatment of metabolic disorders in patients with congenital generalized lipodystrophy (CGL), the effects of chronic leptin deficiency and the treatment on vascular contractility remain unknown. Herein, we investigated the effects of leptin deficiency and treatment (0.3 mg/day/7 days) on aortic contractility in male Berardinelli-Seip 2 gene deficient mice (gBscl2-/-, model of CGL) and their wild-type control (gBscl2+/+), as well as in mice with selective deficiency in endothelial leptin receptor (LepREC-/-). Lipodystrophy selectively increased vascular adrenergic contractility via NO-independent mechanisms and induced hypertrophic vascular remodeling. Leptin treatment and Nox1 inhibition blunted adrenergic hypercontractility in gBscl2-/- mice, however, leptin failed to rescue vascular media thickness. Selective deficiency in endothelial leptin receptor did not alter baseline adrenergic contractility but abolished leptin-mediated reduction in adrenergic contractility, supporting the contribution of endothelium-dependent mechanisms. These data reveal a new direct role for endothelial leptin receptors in the control of vascular contractility and homeostasis, and present leptin as a safe therapy for the treatment of vascular disease in CGL.


Assuntos
Adrenérgicos/metabolismo , Aorta Torácica/metabolismo , Endotélio Vascular/metabolismo , Leptina/metabolismo , Lipodistrofia Generalizada Congênita/metabolismo , Contração Muscular/genética , Músculo Liso Vascular/metabolismo , Transdução de Sinais/genética , Adrenérgicos/administração & dosagem , Adrenérgicos/efeitos adversos , Animais , Modelos Animais de Doenças , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Leptina/administração & dosagem , Leptina/efeitos adversos , Lipodistrofia Generalizada Congênita/tratamento farmacológico , Masculino , Camundongos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Resultado do Tratamento
5.
Curr Opin Nephrol Hypertens ; 27(2): 63-69, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29135585

RESUMO

PURPOSE OF REVIEW: Although it has been known for some time that increases in body mass enhance aldosterone secretion, particularly in women, the origin of this elevation in aldosterone production is not well defined. Adipocyte-derived factors have emerged as potential candidates to increase aldosterone production in obesity. RECENT FINDINGS: Emerging evidence suggests the presence of a mechanistic link in which the adipocyte-derived hormone leptin stimulates aldosterone production in obesity, thereby creating a positive feedback loop for obesity-associated cardiovascular disease. In addition, recent reports give credence to the concept that this leptin-aldosterone stimulation pathway in obesity is an underlying mechanism for sex-discrepancies in obesity-associated cardiovascular disease. SUMMARY: Leptin appears as a new direct regulator of adrenal aldosterone production and leptin-mediated aldosterone production is a novel candidate mechanism underlying obesity-associated hypertension, particularly in females.


Assuntos
Adipócitos/metabolismo , Aldosterona/metabolismo , Doenças Cardiovasculares/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Humanos , Obesidade/complicações , Fatores Sexuais
6.
Int J Mol Sci ; 19(8)2018 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-30126255

RESUMO

Chemerin, acting through its receptor ChemR23, is an adipokine associated with inflammatory response, glucose and lipid metabolism and vascular function. Although this adipokine has been associated with the development and progression of kidney disease, it is not clear whether the chemerin/ChemR23 system plays a role in renal function in the context of diabetes. Therefore, we sought to determine whether ChemR23 receptor blockade prevents the development and/or progression of diabetic nephropathy and questioned the role of oxidative stress and Nrf2 in this process. Renal redox state and function were assessed in non-diabetic lean db/m and diabetic obese db/db mice treated with vehicle or CCX832 (ChemR23 antagonist). Renal reactive oxygen species (ROS) production, which was increased in diabetic mice, was attenuated by CCX832. This was associated with an increase in Nox 4 expression. Augmented protein oxidation in db/db mice was not observed when mice were treated with CCX832. CCX832 also abrogated impaired Nrf2 nuclear activity and associated downregulation in antioxidants expression in kidneys from db/db mice. Our in vivo findings highlight the role of the redox signaling and Nrf2 system as renoprotective players during chemerin receptor blockade in diabetic mice. The chemerin/ChemR23 system may be an important target to limit renal dysfunction associated with obesity-related diabetes.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/prevenção & controle , Rim/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo
7.
Circulation ; 134(23): 1866-1880, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27803035

RESUMO

BACKGROUND: Inflammation is a key feature of aldosterone-induced vascular damage and dysfunction, but molecular mechanisms by which aldosterone triggers inflammation remain unclear. The NLRP3 inflammasome is a pivotal immune sensor that recognizes endogenous danger signals triggering sterile inflammation. METHODS: We analyzed vascular function and inflammatory profile of wild-type (WT), NLRP3 knockout (NLRP3-/-), caspase-1 knockout (Casp-1-/-), and interleukin-1 receptor knockout (IL-1R-/-) mice treated with vehicle or aldosterone (600 µg·kg-1·d-1 for 14 days through osmotic mini-pump) while receiving 1% saline to drink. RESULTS: Here, we show that NLRP3 inflammasome plays a central role in aldosterone-induced vascular dysfunction. Long-term infusion of aldosterone in mice resulted in elevation of plasma interleukin-1ß levels and vascular abnormalities. Mice lacking the IL-1R or the inflammasome components NLRP3 and caspase-1 were protected from aldosterone-induced vascular damage. In vitro, aldosterone stimulated NLRP3-dependent interleukin-1ß secretion by bone marrow-derived macrophages by activating nuclear factor-κB signaling and reactive oxygen species generation. Moreover, chimeric mice reconstituted with NLRP3-deficient hematopoietic cells showed that NLRP3 in immune cells mediates aldosterone-induced vascular damage. In addition, aldosterone increased the expression of NLRP3, active caspase-1, and mature interleukin-1ß in human peripheral blood mononuclear cells. Hypertensive patients with hyperaldosteronism or normal levels of aldosterone exhibited increased activity of NLRP3 inflammasome, suggesting that the effect of hyperaldosteronism on the inflammasome may be mediated through high blood pressure. CONCLUSIONS: Together, these data demonstrate that NLRP3 inflammasome, through activation of IL-1R, is critically involved in the deleterious vascular effects of aldosterone, placing NLRP3 as a potential target for therapeutic interventions in conditions with high aldosterone levels.


Assuntos
Aldosterona/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Acetilcolina/farmacologia , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Caspase 1/deficiência , Caspase 1/genética , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/sangue , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nigericina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Transdução de Sinais/efeitos dos fármacos , Doenças Vasculares/induzido quimicamente
8.
Cardiovasc Diabetol ; 15(1): 119, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27562094

RESUMO

BACKGROUND: High fat diet (HFD) induces insulin resistance in various tissues, including the vasculature. HFD also increases plasma levels of TNF-α, a cytokine that contributes to insulin resistance and vascular dysfunction. Considering that the enzyme phosphatase and tension homologue (PTEN), whose expression is increased by TNF-α, reduces Akt signaling and, consequently, nitric oxide (NO) production, we hypothesized that PTEN contributes to TNF-α-mediated vascular resistance to insulin induced by HFD. Mechanisms underlying PTEN effects were determined. METHODS: Mesenteric vascular beds were isolated from C57Bl/6J and TNF-α KO mice submitted to control or HFD diet for 18 weeks to assess molecular mechanisms by which TNF-α and PTEN contribute to vascular dysfunction. RESULTS: Vasodilation in response to insulin was decreased in HFD-fed mice and in ex vivo control arteries incubated with TNF-α. TNF-α receptors deficiency and TNF-α blockade with infliximab abolished the effects of HFD and TNF-α on insulin-induced vasodilation. PTEN vascular expression (total and phosphorylated isoforms) was increased in HFD-fed mice. Treatment with a PTEN inhibitor improved insulin-induced vasodilation in HFD-fed mice. TNF-α receptor deletion restored PTEN expression/activity and Akt/eNOS/NO signaling in HFD-fed mice. CONCLUSION: TNF-α induces vascular insulin resistance by mechanisms that involve positive modulation of PTEN and inhibition of Akt/eNOS/NO signaling. Our findings highlight TNF-α and PTEN as potential targets to limit insulin resistance and vascular complications associated with obesity-related conditions.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Artéria Mesentérica Superior/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Infliximab/farmacologia , Insulina/metabolismo , Masculino , Artéria Mesentérica Superior/efeitos dos fármacos , Artéria Mesentérica Superior/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Vasodilatação , Vasodilatadores/farmacologia
9.
Clin Sci (Lond) ; 130(11): 881-93, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26935109

RESUMO

Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair endothelial function via COX-2 and ROS-dependent mechanisms.


Assuntos
Células Endoteliais/metabolismo , Metabolismo Energético/genética , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator de Necrose Tumoral alfa/metabolismo , Tecido Adiposo/metabolismo , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Ciclo-Oxigenase 2/metabolismo , Metabolismo Energético/fisiologia , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Fator de Necrose Tumoral alfa/genética , Aumento de Peso/genética
10.
Clin Sci (Lond) ; 128(7): 411-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25358739

RESUMO

Oxidative stress [increased bioavailability of reactive oxygen species (ROS)] plays a role in the endothelial dysfunction and vascular inflammation, which underlie vascular damage in diabetes. Statins are cholesterol-lowering drugs that are vasoprotective in diabetes through unknown mechanisms. We tested the hypothesis that atorvastatin decreases NADPH oxidase (Nox)-derived ROS generation and associated vascular injury in diabetes. Lepr(db)/Lepr(db) (db/db) mice, a model of Type 2 diabetes and control Lepr(db)/Lepr(+) (db/+) mice were administered atorvastatin (10 mg/kg per day, 2 weeks). Atorvastatin improved glucose tolerance in db/db mice. Systemic and vascular oxidative stress in db/db mice, characterized by increased plasma TBARS (thiobarbituric acid-reactive substances) levels and exaggerated vascular Nox-derived ROS generation respectively, were inhibited by atorvastatin. Cytosol-to-membrane translocation of the Nox regulatory subunit p47(phox) and the small GTPase Rac1/2 was increased in vessels from db/db mice compared with db/+ mice, an effect blunted by atorvastatin. The increase in vascular Nox1/2/4 expression and increased phosphorylation of redox-sensitive mitogen-activated protein kinases (MAPKs) was abrogated by atorvastatin in db/db mice. Pro-inflammatory signalling (decreased IκB-α and increased NF-κB p50 expression, increased NF-κB p65 phosphorylation) and associated vascular inflammation [vascular cell adhesion molecule-1 (VCAM-1) expression and vascular monocyte adhesion], which were increased in aortas of db/db mice, were blunted by atorvastatin. Impaired acetylcholine (Ach)- and insulin (INS)-induced vasorelaxation in db/db mice was normalized by atorvastatin. Our results demonstrate that, in diabetic mice, atorvastatin decreases vascular oxidative stress and inflammation and ameliorates vascular injury through processes involving decreased activation of Rac1/2 and Nox. These findings elucidate redox-sensitive and Rac1/2-dependent mechanisms whereby statins protect against vascular injury in diabetes.


Assuntos
Artérias/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , NADPH Oxidases/metabolismo , Pirróis/farmacologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Acetilcolina/farmacologia , Animais , Artérias/metabolismo , Artérias/fisiopatologia , Atorvastatina , Western Blotting , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Insulina/farmacologia , Lipídeos/sangue , Masculino , Camundongos Mutantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Proteína RAC2 de Ligação ao GTP
11.
Clin Sci (Lond) ; 129(7): 533-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25967696

RESUMO

Mineralocorticoid receptors (MRs), which are activated by mineralocorticoids and glucocorticoids, actively participate in mechanisms that affect the structure and function of blood vessels. Although experimental and clinical evidence shows that vascular damage in diabetes is associated with structural alterations in large and small arteries, the role of MR in this process needs further studies. Thus, we tested the hypothesis that MR, through redox-sensitive mechanisms, plays a role in diabetes-associated vascular remodelling. Male, 12-14-weeks-old db/db mice, a model of type 2 diabetes and their non-diabetic counterpart controls (db/+) were treated with spironolactone (MR antagonist, 50 mg/kg/day) or vehicle for 6 weeks. Spironolactone treatment did not affect blood pressure, fasting glucose levels or weight gain, but increased serum potassium and total cholesterol in both, diabetic and control mice. In addition, spironolactone significantly reduced serum insulin levels, but not aldosterone levels in diabetic mice. Insulin sensitivity, evaluated by the HOMA (homoeostatic model assessment)-index, was improved in spironolactone-treated diabetic mice. Mesenteric resistance arteries from vehicle-treated db/db mice exhibited inward hypertrophic remodelling, increased number of smooth muscle cells and increased vascular stiffness. These structural changes, determined by morphometric analysis and with a myography for pressurized arteries, were prevented by spironolactone treatment. Arteries from vehicle-treated db/db mice also exhibited augmented collagen content, determined by Picrosirius Red staining and Western blotting, increased reactive oxygen species (ROS) generation, determined by dihydroethidium (DHE) fluorescence, as well as increased expression of NAD(P)H oxidases 1 and 4 and increased activity of mitogen-activated protein kinases (MAPKs). Spironolactone treatment prevented all these changes, indicating that MR importantly contributes to diabetes-associated vascular dysfunction by inducing oxidative stress and by increasing the activity of redox-sensitive proteins.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/fisiologia , Aldosterona/sangue , Animais , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Colágeno/química , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Etídio/análogos & derivados , Etídio/química , Glucocorticoides/metabolismo , Insulina/sangue , Masculino , Camundongos , Mineralocorticoides/metabolismo , Potássio/sangue , Espécies Reativas de Oxigênio/química , Espironolactona/uso terapêutico
12.
Pharmacol Res ; 102: 235-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26523876

RESUMO

Protein tyrosine phosphatase 1b (Ptp1b), which represses leptin signaling, is a promising therapeutic target for obesity. Genome wide deletion of Ptp1b, increases leptin sensitivity, protects mice from obesity and diabetes, but alters cardiovascular function by increasing blood pressure (BP). Leptin-control of metabolism is centrally mediated and involves proopiomelanocortin (POMC) neurons. Whether these neurons contribute to leptin-mediated increases in BP remain unclear. We hypothesized that increasing leptin signaling in POMC neurons with Ptp1b deletion will sensitize the cardiovascular system to leptin and enhance neurogenic control of BP. We analyzed the cardiovascular phenotype of Ptp1b+/+ and POMC-Ptp1b-/- mice, at baseline and after 7 days of leptin infusion or sympatho-activation with phenylephrine. POMCPtp1b deletion did not alter baseline cardiovascular hemodynamics (BP, heart rate) but reduced BP response to ganglionic blockade and plasma catecholamine levels that suggests a decreased neurogenic control of BP. In contrast, POMC-Ptp1b deletion increased vascular adrenergic reactivity and aortic α-adrenergic receptors expression. Chronic leptin treatment reduced vascular adrenergic reactivity and blunted diastolic and mean BP increases in POMC-Ptp1b-/- mice only. Similarly POMC-Ptp1b-/- mice exhibited a blunted increased in diastolic and mean BP accompanied by a gradual reduction in adrenergic reactivity in response to chronic vascular sympatho-activation with phenylephrine. Together these data rule out our hypothesis but suggest that deletion of Ptp1b in POMC neurons protects from leptin- and sympatho-mediated increases in BP. Vascular adrenergic desensitization appears as a protective mechanism against hypertension, and POMC-Ptp1b as a key therapeutic target for the treatment of metabolic and cardiovascular dysfunctions associated with obesity.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Hipertensão/sangue , Hipertensão/metabolismo , Leptina/farmacologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Obesidade/metabolismo , Fenilefrina/farmacologia , Pró-Opiomelanocortina/efeitos dos fármacos , Receptores Adrenérgicos alfa/metabolismo
13.
Life Sci ; 338: 122361, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158040

RESUMO

AIMS: Overproduction of reactive oxygen species (ROS) is a pathologic hallmark of cyclophosphamide toxicity. For this reason, antioxidant compounds emerge as promising tools for preventing tissue damage induced by cyclophosphamide. We hypothesized that melatonin would display cytoprotective action in the vasculature by preventing cyclophosphamide-induced oxidative stress. MATERIALS AND METHODS: Male C57BL/6 mice (22-25 g) were injected with a single dose of cyclophosphamide (300 mg/kg; i.p.). Mice were pretreated or not with melatonin (10 mg/kg/day, i.p.), given during 4 days before cyclophosphamide injection. Functional (vascular reactivity) and oxidative/inflammatory patterns were evaluated at 24 h in resistance arteries. The antioxidant action of melatonin was assessed in vitro in cultured vascular smooth muscle cells (VSMCs) of mesenteric arteries. KEY FINDINGS: Cyclophosphamide induced ROS generation in both mesenteric arterial bed (MAB) and cultured VSMCs, and this was normalized by melatonin. Cyclophosphamide-induced ROS generation and lipoperoxidation in the bladder and kidney was also prevented by melatonin. Increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were detected in the MAB of cyclophosphamide-treated mice, all of which were prevented by melatonin. Functional assays using second-order mesenteric arteries of cyclophosphamide-treated mice revealed a decrease in vascular contractility. Melatonin prevented vascular hypocontractility in the cyclophosphamide group. Melatonin partially prevented the decrease in myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities in the MAB of the cyclophosphamide group. SIGNIFICANCE: Melatonin may constitute a novel and promising therapeutic approach for management of the toxic effects induced by cyclophosphamide in the vasculature.


Assuntos
Melatonina , Camundongos , Masculino , Animais , Espécies Reativas de Oxigênio/farmacologia , Melatonina/uso terapêutico , Antioxidantes/metabolismo , Camundongos Endogâmicos C57BL , Ciclofosfamida/toxicidade , Estresse Oxidativo , Artérias Mesentéricas/metabolismo
14.
Hypertension ; 81(4): 776-786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240165

RESUMO

BACKGROUND: Aldosterone has been described to initiate cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of CCL5 (C-C motif chemokine ligand 5) and its receptor CCR5 (C-C motif chemokine receptor 5) are well known in infectious diseases, their contributions to aldosterone-induced vascular injury and hypertension remain unknown. METHODS: We analyzed the vascular profile, blood pressure, and renal damage in wild-type (CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 µg/kg per day for 14 days) while receiving 1% saline to drink. Vascular function was analyzed in aorta and mesenteric arteries, blood pressure was measured by telemetry and renal injury and inflammation were analyzed via histology and flow cytometry. Endothelial cells were used to study the molecular signaling whereby CCL5 induces endothelial dysfunction. RESULTS: Aldosterone treatment resulted in exaggerated CCL5 circulating levels and vascular CCR5 expression in CCR5+/+ mice accompanied by endothelial dysfunction, hypertension, and renal inflammation and damage. CCR5-/- mice were protected from these aldosterone-induced effects. Mechanistically, we demonstrated that CCL5 increased NOX1 (NADPH oxidase 1) expression, reactive oxygen species formation, NFκB (nuclear factor kappa B) activation, and inflammation and reduced NO production in isolated endothelial cells. These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aorta incubated with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking NOX1, NFκB, or CCR5. CONCLUSIONS: Our data demonstrate that CCL5/CCR5, through activation of NFκB and NOX1, is critically involved in aldosterone-induced vascular and renal damage and hypertension placing CCL5 and CCR5 as potential therapeutic targets for conditions characterized by aldosterone excess.


Assuntos
Aldosterona , Quimiocina CCL5 , Hipertensão , Receptores CCR5 , Animais , Camundongos , Aldosterona/farmacologia , Células Endoteliais/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Inflamação , Receptores CCR5/genética , Receptores CCR5/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo
15.
Antioxidants (Basel) ; 12(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37891892

RESUMO

Consumption of high amounts of ethanol is a risk factor for development of cardiovascular diseases such as arterial hypertension. The hypertensive state induced by ethanol is a complex multi-factorial event, and oxidative stress is a pathophysiological hallmark of vascular dysfunction associated with ethanol consumption. Increasing levels of reactive oxygen species (ROS) in the vasculature trigger important processes underlying vascular injury, including accumulation of intracellular Ca2+ ions, reduced bioavailability of nitric oxide (NO), activation of mitogen-activated protein kinases (MAPKs), endothelial dysfunction, and loss of the anticontractile effect of perivascular adipose tissue (PVAT). The enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase plays a central role in vascular ROS generation in response to ethanol. Activation of the renin-angiotensin-aldosterone system (RAAS) is an upstream mechanism which contributes to NADPH oxidase stimulation, overproduction of ROS, and vascular dysfunction. This review discusses the mechanisms of vascular dysfunction induced by ethanol, detailing the contribution of ROS to these processes. Data examining the association between neuroendocrine changes and vascular oxidative stress induced by ethanol are also reviewed and discussed. These issues are of paramount interest to public health as ethanol contributes to blood pressure elevation in the general population, and it is linked to cardiovascular conditions and diseases.

16.
J Am Heart Assoc ; 12(16): e030353, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581395

RESUMO

Background The mechanisms determining vascular tone are still not completely understood, even though it is a significant factor in blood pressure management. Many circulating proteins have a significant impact on controlling vascular tone. Progranulin displays anti-inflammatory effects and has been extensively studied in neurodegenerative illnesses. We investigated whether progranulin sustains the vascular tone that helps regulate blood pressure. Methods and Results We used male and female C57BL6/J wild type (progranulin+/+) and B6(Cg)-Grntm1.1Aidi/J (progranulin-/-) to understand the impact of progranulin on vascular contractility and blood pressure. We found that progranulin-/- mice display elevated blood pressure followed by hypercontractility to noradrenaline in mesenteric arteries, which is restored by supplementing the mice with recombinant progranulin. In ex vivo experiments, recombinant progranulin attenuated the vascular contractility to noradrenaline in male and female progranulin+/+ arteries, which was blunted by blocking EphrinA2 or Sortilin1. To understand the mechanisms whereby progranulin evokes anticontractile effects, we inhibited endothelial factors. N(gamma)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor) prevented the progranulin effects, whereas indomethacin (cyclooxygenase inhibitor) affected only the contractility in arteries incubated with vehicle, indicating that progranulin increases nitric oxide and decreases contractile prostanoids. Finally, recombinant progranulin induced endothelial nitric oxide synthase phosphorylation and nitric oxide production in isolated mesenteric endothelial cells. Conclusions Circulating progranulin regulates vascular tone and blood pressure via EphrinA2 and Sortilin1 receptors and endothelial nitric oxide synthase activation. Collectively, our data suggest that deficiency in progranulin is a cardiovascular risk factor and that progranulin might be a new therapeutic avenue to treat high blood pressure.


Assuntos
Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Masculino , Feminino , Camundongos , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Pressão Sanguínea , Progranulinas/farmacologia , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Artérias Mesentéricas/metabolismo , Endotélio Vascular/metabolismo , Norepinefrina
17.
Biosci Rep ; 43(7)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37342890

RESUMO

BACKGROUND: Obesity is the number one cardiovascular risk factor for both men and women and is a complex condition. Although a sex dimorphism on vascular function has already been noted, the underlying processes remain unclear. The Rho-kinase pathway has a unique role in controlling vascular tone, and in obese male mice, hyperactivation of this system results in worsened vascular constriction. We investigated whether female mice exhibit decreased Rho-kinase activation as a protective mechanism in obesity. METHODS: We exposed male and female mice to a high-fat diet (HFD) for 14 weeks. At the end, energy expenditure, glucose tolerance, adipose tissue inflammation, and vascular function were investigated. RESULTS: Male mice were more sensitive to HFD-induced body weight gain, glucose tolerance, and inflammation than female mice. After establishing obesity, female mice demonstrated increase in energy expenditure, characterized by an increase in heat, whereas male mice did not. Interestingly, obese female mice, but not male, displayed attenuated vascular contractility to different agonists, such difference was blunted by inhibition of Rho-kinase, which was accompanied by a suppressed Rho-kinase activation, measured by Western blot. Finally, aortae from obese male mice displayed an exacerbated inflammation, whereas obese female demonstrated a mild vascular inflammation. CONCLUSION: In obesity, female mice demonstrate a vascular protective mechanism-suppression of vascular Rho-kinase-to minimize the cardiovascular risk associated with obesity, whereas male mice do not generate any adaptive response. Future investigations can help to understand how Rho-kinase becomes suppressed in female during obesity.


Assuntos
Obesidade , Quinases Associadas a rho , Feminino , Camundongos , Animais , Quinases Associadas a rho/metabolismo , Camundongos Obesos , Obesidade/metabolismo , Inflamação/complicações , Glucose , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
18.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961631

RESUMO

Objective: Cardiovascular disease (CVD) is a global health crisis and a leading cause of mortality. The intricate interplay between vascular contractility and mitochondrial function is central to CVD pathogenesis. The progranulin gene (GRN) encodes glycoprotein progranulin (PGRN), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in CVD remains enigmatic. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. Method: Our investigation utilized aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice, encompassing wire myograph assays to assess vascular contractility and primary aortic vascular smooth muscle cells (VSMCs) for mechanistic insights. Results: Our results showed suppression of contractile activity in PGRN-/- VSMCs and aorta, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency impaired mitochondrial oxygen consumption rate (OCR), complex I activity, mitochondrial turnover, and mitochondrial redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted OCR. In addition, VSMC overexpressing PGRN displayed higher mitochondrial respiration and complex I activity accompanied by cellular hypercontractility. Furthermore, increased PGRN triggered lysosome biogenesis by regulating transcription factor EB and accelerated mitophagy flux in VSMC, while treatment with spermidine, an autophagy inducer, improved mitochondrial phenotype and enhanced vascular contractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/- suggesting a key role of PGRN to maintain the vascular tone. Conclusion: Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial complex I activity, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in CVD development.

19.
Biomed Pharmacother ; 169: 115845, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37951022

RESUMO

BACKGROUND: Renin-angiotensin (Ang II)-aldosterone system (RAAS) is crucial for the cardiovascular risk associated with excessive ethanol consumption. Disturbs in mitochondria have been implicated in multiple cardiovascular diseases. However, if mitochondria dysfunction contributes to ethanol-induced vascular dysfunction is still unknown. We investigated whether ethanol leads to vascular dysfunction via RAAS activation, mitochondria dysfunction, and mitochondrial reactive oxygen species (mtROS). METHODS: Male C57/BL6J or mt-keima mice (6-8-weeks old) were treated with ethanol (20% vol./vol.) for 12 weeks with or without Losartan (10 mg/kg/day). RESULTS: Ethanol induced aortic hypercontractility in an endothelium-dependent manner. PGC1α (a marker of biogenesis), Mfn2, (an essential protein for mitochondria fusion), as well as Pink-1 and Parkin (markers of mitophagy), were reduced in aortas from ethanol-treated mice. Disturb in mitophagy flux was further confirmed in arteries from mt-keima mice. Additionally, ethanol increased mtROS and reduced SOD2 expression. Strikingly, losartan prevented vascular hypercontractility, mitochondrial dysfunction, mtROS, and restored SOD2 expression. Both MnTMPyP (SOD2 mimetic) and CCCP (a mitochondrial uncoupler) reverted ethanol-induced vascular dysfunction. Moreover, L-NAME (NOS inhibitor) and EUK 134 (superoxide dismutase/catalase mimetic) did not affect vascular response in ethanol group, suggesting that ethanol reduces aortic nitric oxide (NO) and H2O2 bioavailability. These responses were prevented by losartan. CONCLUSION: AT1 receptor modulates ethanol-induced vascular hypercontractility by promoting mitochondrial dysfunction, mtROS, and reduction of NO and H2O2 bioavailability. Our findings shed a new light in our understanding of ethanol-induced vascular toxicity and open perspectives of new therapeutic approaches for patients with disorder associated with abusive ethanol drinking.


Assuntos
Losartan , Lesões do Sistema Vascular , Humanos , Camundongos , Masculino , Animais , Losartan/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Etanol/toxicidade , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo
20.
Shock ; 59(1): 74-81, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36703278

RESUMO

ABSTRACT: Kawasaki disease (KD) is a systemic vasculitis of childhood characterized by vascular damage in the acute stage, which can persist into the late stage. The vascular mechanisms in the cardiovascular risk of KD are not fully studied. We investigated the vascular function and blood pressure in a murine model of KD. We used the Candida albicans water-soluble (CAWS) fraction model. Mice were injected with 4 mg CAWS for 5 consecutive days and separated into three groups. Control, CAWS 7 days (C7), and CAWS 28 days (C28). Hearts and arteries were harvested for vascular characterization. Rat aortic smooth muscle cells were used to studies in vitro. C7 presented elevated inflammatory markers in the coronary area and abdominal aortas, whereas C28 showed severe vasculitis. No difference was found in blood pressure parameters. Vascular dysfunction characterized by higher contractility to norepinephrine in C7 and C28 in aortic rings was abolished by blocking nitric oxide (NO), reactive oxygen species, and cyclooxygenase (COX)-derived products. The CAWS complex increased COX2 expression in rat aortic smooth muscle cells, which was prevented by Toll-like receptor 4 antagonist. Our data indicate that the murine model of KD is associated with vascular dysfunction likely dependent on COX-derived products, oxidant properties, and NO bioavailability. Furthermore, vascular smooth muscle cell may present an important role in the genesis of vascular dysfunction and vasculitis via the Toll-like receptor 4 pathway. Finally, the CAWS model seems not to be appropriate to study KD-associated shock. More studies are necessary to understand whether vascular dysfunction and COXs are triggers for vasculitis.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Vasculite , Camundongos , Animais , Ratos , Síndrome de Linfonodos Mucocutâneos/metabolismo , Receptor 4 Toll-Like , Pressão Sanguínea , Modelos Animais de Doenças , Aorta , Candida albicans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA