Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 35(6): 1011-1022, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35532537

RESUMO

Peptide couplers (also known as amide bond-forming reagents or coupling reagents) are broadly used in organic chemical syntheses, especially in the pharmaceutical industry. Yet, occupational health hazards associated with this chemical class are largely unexplored, which is disconcerting given the intrinsic reactivity of these compounds. Several case studies involving occupational exposures reported adverse respiratory and dermal health effects, providing initial evidence of chemical sensitization. To address the paucity of toxicological data, a pharmaceutical cross-industry task force was formed to evaluate and assess the potential of these compounds to cause eye and dermal irritation as well as corrosivity and dermal sensitization. The goal of our work was to inform health and safety professionals as well as pharmaceutical and organic chemists of the occupational health hazards associated with this chemical class. To that end, 25 of the most commonly used peptide couplers and five hydrolysis products were selected for in vivo, in vitro, and in silico testing. Our findings confirmed that dermal sensitization is a concern for this chemical class with 21/25 peptide couplers testing positive for dermal sensitization and 15 of these being strong/extreme sensitizers. We also found that dermal corrosion and irritation (8/25) as well as eye irritation (9/25) were health hazards associated with peptide couplers and their hydrolysis products (4/5 were dermal irritants or corrosive and 4/5 were eye irritants). Resulting outcomes were synthesized to inform decision making in peptide coupler selection and enable data-driven hazard communication to workers. The latter includes harmonized hazard classifications, appropriate handling recommendations, and accurate safety data sheets, which support the industrial hygiene hierarchy of control strategies and risk assessment. Our study demonstrates the merits of an integrated, in vivo -in silico analysis, applied here to the skin sensitization endpoint using the Computer-Aided Discovery and REdesign (CADRE) and Derek Nexus programs. We show that experimental data can improve predictive models by filling existing data gaps while, concurrently, providing computational insights into key initiating events and elucidating the chemical structural features contributing to adverse health effects. This interactive, interdisciplinary approach is consistent with Green Chemistry principles that seek to improve the selection and design of less hazardous reagents in industrial processes and applications.


Assuntos
Irritantes , Saúde Ocupacional , Humanos , Peptídeos/farmacologia , Preparações Farmacêuticas , Pele
2.
Regul Toxicol Pharmacol ; 81: 201-211, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27569203

RESUMO

Leachables from pharmaceutical container closure systems can present potential safety risks to patients. Extractables studies may be performed as a risk mitigation activity to identify potential leachables for dosage forms with a high degree of concern associated with the route of administration. To address safety concerns, approaches to toxicological safety evaluation of extractables and leachables have been developed and applied by pharmaceutical and biologics manufacturers. Details of these approaches may differ depending on the nature of the final drug product. These may include application, the formulation, route of administration and length of use. Current regulatory guidelines and industry standards provide general guidance on compound specific safety assessments but do not provide a comprehensive approach to safety evaluations of leachables and/or extractables. This paper provides a perspective on approaches to safety evaluations by reviewing and applying general concepts and integrating key steps in the toxicological evaluation of individual extractables or leachables. These include application of structure activity relationship studies, development of permitted daily exposure (PDE) values, and use of safety threshold concepts. Case studies are provided. The concepts presented seek to encourage discussion in the scientific community, and are not intended to represent a final opinion or "guidelines."


Assuntos
Produtos Biológicos/efeitos adversos , Produtos Biológicos/química , Liberação Controlada de Fármacos , Preparações Farmacêuticas/química , Segurança , Produtos Biológicos/administração & dosagem , Segurança Química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA