Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 32(5): 1501-1518, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32205456

RESUMO

Leaf morphogenesis requires growth polarized along three axes-proximal-distal (P-D) axis, medial-lateral axis, and abaxial-adaxial axis. Grass leaves display a prominent P-D polarity consisting of a proximal sheath separated from the distal blade by the auricle and ligule. Although proper specification of the four segments is essential for normal morphology, our knowledge is incomplete regarding the mechanisms that influence P-D specification in monocots such as maize (Zea mays). Here, we report the identification of the gene underlying the semidominant, leaf patterning maize mutant Hairy Sheath Frayed1 (Hsf1). Hsf1 plants produce leaves with outgrowths consisting of proximal segments-sheath, auricle, and ligule-emanating from the distal blade margin. Analysis of three independent Hsf1 alleles revealed gain-of-function missense mutations in the ligand binding domain of the maize cytokinin (CK) receptor Z. mays Histidine Kinase1 (ZmHK1) gene. Biochemical analysis and structural modeling suggest the mutated residues near the CK binding pocket affect CK binding affinity. Treatment of the wild-type seedlings with exogenous CK phenocopied the Hsf1 leaf phenotypes. Results from expression and epistatic analyses indicated the Hsf1 mutant receptor appears to be hypersignaling. Our results demonstrate that hypersignaling of CK in incipient leaf primordia can reprogram developmental patterns in maize.


Assuntos
Padronização Corporal , Citocininas/metabolismo , Mutação/genética , Folhas de Planta/embriologia , Folhas de Planta/genética , Transdução de Sinais , Zea mays/genética , Sítios de Ligação , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ligantes , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação para Cima/genética
2.
Plant Physiol ; 175(3): 1350-1369, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899960

RESUMO

Drought stress is one of the main environmental problems encountered by crop growers. Reduction in arable land area and reduced water availability make it paramount to identify and develop strategies to allow crops to be more resilient in water-limiting environments. The plant hormone abscisic acid (ABA) plays an important role in the plants' response to drought stress through its control of stomatal aperture and water transpiration, and transgenic modulation of ABA levels therefore represents an attractive avenue to improve the drought tolerance of crops. Several steps in the ABA-signaling pathway are controlled by ubiquitination involving really interesting new genes (RING) domain-containing proteins. We characterized the maize (Zea mays) RING protein family and identified two novel RING-H2 genes called ZmXerico1 and ZmXerico2 Expression of ZmXerico genes is induced by drought stress, and we show that overexpression of ZmXerico1 and ZmXerico2 in Arabidopsis and maize confers ABA hypersensitivity and improved water use efficiency, which can lead to enhanced maize yield performance in a controlled drought-stress environment. Overexpression of ZmXerico1 and ZmXerico2 in maize results in increased ABA levels and decreased levels of ABA degradation products diphaseic acid and phaseic acid. We show that ZmXerico1 is localized in the endoplasmic reticulum, where ABA 8'-hydroxylases have been shown to be localized, and that it functions as an E3 ubiquitin ligase. We demonstrate that ZmXerico1 plays a role in the control of ABA homeostasis through regulation of ABA 8'-hydroxylase protein stability, representing a novel control point in the regulation of the ABA pathway.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Secas , Homeostase , Domínios RING Finger , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Zea mays/fisiologia , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Ritmo Circadiano/genética , Sequência Consenso , Desidratação , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Família Multigênica , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/enzimologia , Zea mays/genética
3.
Plant Sci ; 307: 110899, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902858

RESUMO

Corteva Agriscience™ ran a discovery research program to identify biotech leads for improving maize Agronomic Traits such as yield, drought tolerance, and nitrogen use efficiency. Arising from many discovery sources involving thousands of genes, this program generated over 3331 DNA cassette constructs involving a diverse set of circa 1671 genes, whose transformed maize events were field tested from 2000 to 2018 under managed environments designed to evaluate their potential for commercialization. We demonstrate that a subgroup of these transgenic events improved yield in field-grown elite maize breeding germplasm. A set of at least 22 validated gene leads are identified and described which represent diverse molecular and physiological functions. These leads illuminate sectors of biology that could guide crop improvement in maize and perhaps other crops. In this review and interpretation, we share some of our approaches and results, and key lessons learned in discovering and developing these maize Agronomic Traits leads.


Assuntos
Biotecnologia/métodos , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas , Zea mays/genética , Fenótipo
4.
J Exp Bot ; 59(10): 2673-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18515825

RESUMO

To study the effects of cytokinin O-glucosylation in monocots, maize (Zea mays L.) transformants harbouring the ZOG1 gene (encoding a zeatin O-glucosyltransferase from Phaseolus lunatus L.) under the control of the constitutive ubiquitin (Ubi) promoter were generated. The roots and leaves of the transformants had greatly increased levels of zeatin-O-glucoside. The vegetative characteristics of hemizygous and homozygous Ubi:ZOG1 plants resembled those of cytokinin-deficient plants, including shorter stature, thinner stems, narrower leaves, smaller meristems, and increased root mass and branching. Transformant leaves had a higher chlorophyll content and increased levels of active cytokinins compared with those of non-transformed sibs. The Ubi:ZOG1 plants exhibited delayed senescence when grown in the spring/summer. While hemizygous transformants had reduced tassels with fewer spikelets and normal viable pollen, homozygotes had very small tassels and feminized tassel florets, resembling tasselseed phenotypes. Such modifications of the reproductive phase were unexpected and demonstrate a link between cytokinins and sex-specific floral development in monocots.


Assuntos
Expressão Gênica , Glucosiltransferases/metabolismo , Phaseolus/enzimologia , Proteínas de Plantas/metabolismo , Sementes/química , Zea mays/crescimento & desenvolvimento , Zeatina/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Glucosiltransferases/genética , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Estômatos de Plantas/química , Estômatos de Plantas/citologia , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Zea mays/química , Zea mays/genética , Zea mays/metabolismo
5.
Plant Mol Biol ; 67(3): 215-29, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18311542

RESUMO

Cytokinins (CKs) are plant hormones that regulate a large number of processes associated with plant growth and development such as induction of stomata opening, delayed senescence, suppression of auxin-induced apical dominance, signaling of nitrogen availability, differentiation of plastids and control of sink strength. In maize, CKs are thought to play an important role in establishing seed size and increasing seed set under normal and unfavorable environmental conditions therefore influencing yield. In recent years, the discovery of isopentenyl transferase (IPT) genes in plants has shed light on the CK biosynthesis pathway in plants. In an effort to increase our understanding of the role played by CKs in maize development and sink-strength, we identified several putative IPT genes using a bioinformatics approach. We focused our attention on one gene in particular, ZmIPT2, because of its strong expression in developing kernels. The expression of the gene and its product overlays the change in CK levels in developing kernels suggesting a major role in CK biosynthesis for kernel development. We demonstrate that at 8-10 days after pollination (DAP) the endosperm and especially the basal transfer cell layer (BETL) is a major site of ZmIPT2 expression, and that this expression persists in the BETL and the developing embryo into later kernel development stages. We show that ectopic expression of ZmIPT2 in calli and in planta created phenotypes consistent with CK overproduction. We also show that ZmIPT2 preferentially uses ADP and ATP over AMP as the substrates for dimethylallyl diphosphate (DMAPP) IPT activity. The expression pattern of ZmIPT2 in the BETL, endosperm and embryo during kernel development will be discussed with an emphasis on the suggested role of CKs in determining sink-strength and grain production in crop plants.


Assuntos
Alquil e Aril Transferases/genética , Zea mays/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Sequência Conservada , Citocininas/genética , Amplificação de Genes , Dados de Sequência Molecular , Família Multigênica , Filogenia , Folhas de Planta/enzimologia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Zea mays/enzimologia
6.
Plant Physiol ; 132(3): 1228-40, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857805

RESUMO

Cytokinins are hormones that play an essential role in plant growth and development. The irreversible degradation of cytokinins, catalyzed by cytokinin oxidase, is an important mechanism by which plants modulate their cytokinin levels. Cytokinin oxidase has been well characterized biochemically, but its regulation at the molecular level is not well understood. We isolated a cytokinin oxidase open reading frame from maize (Zea mays), called Ckx1, and we used it as a probe in northern and in situ hybridization experiments. We found that the gene is expressed in a developmental manner in the kernel, which correlates with cytokinin levels and cytokinin oxidase activity. In situ hybridization with Ckx1 and transgenic expression of a transcriptional fusion of the Ckx1 promoter to the Escherichia coli beta-glucuronidase reporter gene revealed that the gene is expressed in the vascular bundles of kernels, seedling roots, and coleoptiles. We show that Ckx1 gene expression is inducible in various organs by synthetic and natural cytokinins. Ckx1 is also induced by abscisic acid, which may control cytokinin oxidase expression in the kernel under abiotic stress. We hypothesize that under non-stress conditions, cytokinin oxidase in maize plays a role in controlling growth and development via regulation of cytokinin levels transiting in the xylem. In addition, we suggest that under environmental stress conditions, cytokinin oxidase gene induction by abscisic acid results in aberrant degradation of cytokinins therefore impairing normal development.


Assuntos
Ácido Abscísico/farmacologia , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxirredutases/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/enzimologia , Alelos , Citocininas/metabolismo , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Hibridização In Situ , Oxirredutases/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Tempo , Ativação Transcricional , Zea mays/genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA