Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628729

RESUMO

Transglutaminase 2 (TG2) is a multifunctional enzyme primarily responsible for crosslinking proteins. Ubiquitously expressed in humans, TG2 can act either as a transamidase by crosslinking two substrates through formation of an Nε(ɣ-glutaminyl)lysine bond or as an intracellular G-protein. These discrete roles are tightly regulated by both allosteric and environmental stimuli and are associated with dramatic changes in the conformation of the enzyme. The pleiotropic nature of TG2 and multi-faceted activities have resulted in TG2 being implicated in numerous disease pathologies including celiac disease, fibrosis, and cancer. Targeted TG2 therapies have not been selective for subcellular localization, such that currently no tools exist to selectively target extracellular over intracellular TG2. Herein, we have designed novel TG2-selective inhibitors that are not only highly potent and irreversible, but also cell impermeable, targeting only extracellular TG2. We have also further derivatized the scaffold to develop probes that are intrinsically fluorescent or bear an alkyne handle, which target both intra- and extracellular TG2, in order to facilitate cellular labelling and pull-down assays. The fluorescent probes were internalized and imaged in cellulo, and provide the first implicit experimental evidence that by comparison with their cell-impermeable analogues, it is specifically intracellular TG2, and presumably its G-protein activity, that contributes to transglutaminase-associated cancer progression.


Assuntos
Neoplasias , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Transglutaminases , Corantes Fluorescentes , Fenótipo
2.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698503

RESUMO

Chemotherapy-induced differentiation of immature myeloid progenitors, such as acute myeloid leukemia (AML) cells or myeloid-derived suppressor cells (MDSCs), has remained a challenge for the clinicians. Testing our imidazo[1,2-b]pyrazole-7-carboxamide derivative on HL-60 cells, we obtained ERK phosphorylation as an early survival response to treatment followed by the increase of the percentage of the Bcl-xlbright and pAktbright cells. Following the induction of Vav1 and the AP-1 complex, a driver of cellular differentiation, FOS, JUN, JUNB, and JUND were elevated on a concentration and time-dependent manner. As a proof of granulocytic differentiation, the cells remained non-adherent, the expression of CD33 decreased; the granularity, CD11b expression, and MPO activity of HL-60 cells increased upon treatment. Finally, viability of HL-60 cells was hampered shown by the depolarization of mitochondria, activation of caspase-3, cleavage of Z-DEVD-aLUC, appearance of the sub-G1 population, and the leakage of the lactate-dehydrogenase into the supernatant. We confirmed the differentiating effect of our drug candidate on human patient-derived AML cells shown by the increase of CD11b and decrease of CD33+, CD7+, CD206+, and CD38bright cells followed apoptosis (IC50: 80 nM) after treatment ex vivo. Our compound reduced both CD11b+/Ly6C+ and CD11b+/Ly6G+ splenic MDSCs from the murine 4T1 breast cancer model ex vivo.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Células Supressoras Mieloides/efeitos dos fármacos , Pirazóis/farmacologia , Animais , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Feminino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/metabolismo , Pirazóis/química , Células Tumorais Cultivadas , Adulto Jovem
3.
J Cell Physiol ; 234(7): 11188-11199, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30565691

RESUMO

Clusterin (CLU) is a chaperone-like protein with multiple functions. sCLU is frequently upregulated in prostate tumor cells after chemo- or radiotherapy and after surgical or pharmacological castration. Moreover, CLU has been documented to modulate the cellular homolog of murine thymoma virus akt8 oncogene (AKT) activity. Here, we investigated how CLU overexpression influences phosphatidylinositol 3'-kinase (PI3K)/AKT signaling in human normal and cancer epithelial prostate cells. Human prostate cells stably transfected with CLU were broadly profiled by reverse phase protein array (RPPA), with particular emphasis on the PI3K/AKT pathway. The effect of CLU overexpression on normal and cancer cell motility was also tested. Our results clearly indicate that CLU overexpression enhances phosphorylation of AKT restricted to isoform 2. Mechanistically, this can be explained by the finding that the phosphatase PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1), known to dephosphorylate AKT2 at S474, is markedly downregulated by CLU, whereas miR-190, a negative regulator of PHLPP1, is upregulated. Moreover, we found that phosphatase and tensin homolog (PTEN) was heavily phosphorylated at the inhibitory site S380, contributing to the hyperactivation of AKT signaling. By keeping AKT2 phosphorylation high, CLU dramatically enhances the migratory behavior of prostate epithelial cell lines with different migratory and invasive phenotypes, namely prostate normal epithelial 1A (PNT1A) and prostatic carcinoma 3 (PC3) cells. Altogether, our results unravel for the first time a circuit by which CLU can switch a low migration phenotype toward a high migration phenotype, through miR-190-dependent downmodulation of PHLPP1 expression and, in turn, stabilization of AKT2 phosphorylation.


Assuntos
Clusterina/metabolismo , Proteínas Nucleares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3 , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Clusterina/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , MicroRNAs/genética , Células PC-3 , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética
4.
Mol Carcinog ; 58(5): 708-721, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30582225

RESUMO

Cells in non-invasive breast lesions are widely believed to possess molecular alterations that render them either susceptible or refractory to the acquisition of invasive capability. One such alteration could be the ectopic expression of the ß2 isoform of phosphoinositide-dependent phospholipase C (PLC-ß2), known to counteract the effects of hypoxia in low-invasive breast tumor-derived cells. Here, we studied the correlation between PLC-ß2 levels and the propensity of non-invasive breast tumor cells to acquire malignant features. Using archival FFPE samples and DCIS-derived cells, we demonstrate that PLC-ß2 is up-regulated in DCIS and that its forced down-modulation induces an epithelial-to-mesenchymal shift, expression of the cancer stem cell marker CD133, and the acquisition of invasive properties. The ectopic expression of PLC-ß2 in non-transformed and DCIS-derived cells is, to some extent, dependent on the de-regulation of miR-146a, a tumor suppressor miRNA in invasive breast cancer. Interestingly, an inverse relationship between the two molecules, indicative of a role of miR-146a in targeting PLC-ß2, was not detected in primary DCIS from patients who developed a second invasive breast neoplasia. This suggests that alterations of the PLC-ß2/miR-146a relationship in DCIS may constitute a molecular risk factor for the appearance of new breast lesions. Since neither traditional classification systems nor molecular characterizations are able to predict the malignant potential of DCIS, as is possible for invasive ductal carcinoma (IDC), we propose that the assessment of the PLC-ß2/miR-146a levels at diagnosis could be beneficial for identifying whether DCIS patients may have either a low or high propensity for invasive recurrence.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Fosfolipase C beta/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Proliferação de Células , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Fosfolipase C beta/genética , Prognóstico , Células Tumorais Cultivadas
5.
J Cell Mol Med ; 22(6): 3149-3158, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29532991

RESUMO

It has been recently demonstrated that high pre-treatment levels of miR-29b positively correlated with the response of patients with acute myeloid leukaemia (AML) to hypomethylating agents. Upmodulation of miR-29b by restoring its transcriptional machinery appears indeed a tool to improve therapeutic response in AML. In cells from acute promyelocytic leukaemia (APL), miR-29b is regulated by PU.1, in turn upmodulated by agonists currently used to treat APL. We explored here the ability of PU.1 to also regulate miR-29b in non-APL cells, in order to identify agonists that, upmodulating PU.1 may be beneficial in hypomethylating agents-based therapies. We found that PU.1 may regulate miR-29b in the non-APL Kasumi-1 cells, showing the t(8;21) chromosomal rearrangement, which is prevalent in AML and correlated with a relatively low survival. We demonstrated that the PU.1-mediated contribution of the 2 miR-29b precursors is cell-related and almost completely dependent on adequate levels of Vav1. Nuclear PU.1/Vav1 association accompanies the transcription of miR-29b but, at variance with the APL-derived NB4 cells, in which the protein is required for the association of PU.1 with both miRNA promoters, Vav1 is part of molecular complexes to the PU.1 consensus site in Kasumi-1. Our results add new information on the transcriptional machinery that regulates miR-29b expression in AML-derived cells and may help in identifying drugs useful in upmodulation of this miRNA in pre-treatment of patients with non-APL leukaemia who can take advantage from hypomethylating agent-based therapies.


Assuntos
Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica/genética , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Regiões Promotoras Genéticas
6.
BMC Cancer ; 18(1): 1194, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497437

RESUMO

BACKGROUND: The presence of hypoxic areas is common in all breast lesions but no data clearly correlate low oxygenation with the acquisition of malignant features by non-invasive cells, particularly by cells from ductal carcinoma in situ (DCIS), the most frequently diagnosed tumor in women. METHODS: By using a DCIS-derived cell line, we evaluated the effects of low oxygen availability on malignant features of non-invasive breast tumor cells and the possible role of all-trans retinoic acid (ATRA), a well-known anti-leukemic drug, in counteracting the effects of hypoxia. The involvement of the ß2 isoform of PI-PLC (PLC-ß2), an ATRA target in myeloid leukemia cells, was also investigated by specific modulation of the protein expression. RESULTS: We demonstrated that moderate hypoxia is sufficient to induce, in DCIS-derived cells, motility, epithelial-to-mesenchymal transition (EMT) and expression of the stem cell marker CD133, indicative of their increased malignant potential. Administration of ATRA supports the epithelial-like phenotype of DCIS-derived cells cultured under hypoxia and keeps down the number of CD133 positive cells, abrogating almost completely the effects of poor oxygenation. We also found that the mechanisms triggered by ATRA in non-invasive breast tumor cells cultured under hypoxia is in part mediated by PLC-ß2, responsible to counteract the effects of low oxygen availability on CD133 levels. CONCLUSIONS: Overall, we assigned to hypoxia a role in increasing the malignant potential of DCIS-derived cells and we identified in ATRA, currently used in treatment of acute promyelocytic leukemia (APL), an agonist potentially useful in preventing malignant progression of non-invasive breast lesions showing hypoxic areas.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hipóxia/metabolismo , Tretinoína/farmacologia , Biomarcadores , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Humanos , Hipóxia/genética , Imuno-Histoquímica , Gradação de Tumores , Estadiamento de Neoplasias , Oxigênio/metabolismo , Fosfolipase C beta/metabolismo
7.
BMC Cancer ; 17(1): 617, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870198

RESUMO

BACKGROUND: The malignant potential of triple negative breast cancer (TNBC) is also dependent on a sub-population of cells with a stem-like phenotype. Among the cancer stem cell markers, CD133 and EpCAM strongly correlate with breast tumor aggressiveness, suggesting that simultaneous targeting of the two surface antigens may be beneficial in treatment of TNBC. Since in TNBC-derived cells we demonstrated that PLC-ß2 induces the conversion of CD133high to CD133low cells, here we explored its possible role in down-modulating the expression of both CD133 and EpCAM and, ultimately, in reducing the number of TNBC cells with a stem-like phenotype. METHODS: A magnetic step-by-step cell isolation with antibodies directed against CD133 and/or EpCAM was performed on the TNBC-derived MDA-MB-231 cell line. In the same cell model, PLC-ß2 was over-expressed or down-modulated and cell proliferation and invasion capability were evaluated by Real-time cell assays. The surface expression of CD133, EpCAM and CD44 in the different experimental conditions were measured by multi-color flow cytometry immunophenotyping. RESULTS: A CD133+/EpCAM+ sub-population with high proliferation rate and invasion capability is present in the MDA-MB-231 cell line. Over-expression of PLC-ß2 in CD133+/EpCAM+ cells reduced the surface expression of both CD133 and EpCAM, as well as proliferation and invasion capability of this cellular subset. On the other hand, the up-modulation of PLC-ß2 in the whole MDA-MB-231 cell population reduced the number of cells with a CD44+/CD133+/EpCAM+ stem-like phenotype. CONCLUSIONS: Since selective targeting of the cells with the highest aggressive potential may have a great clinical importance for TNBC, the up-modulation of PLC-ß2, reducing the number of cells with a stem-like phenotype, may be a promising goal for novel therapies aimed to prevent the progression of aggressive breast tumors.


Assuntos
Antígeno AC133/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Fosfolipase C beta/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Imunofluorescência , Humanos , Imunofenotipagem , Gradação de Tumores , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Fosfolipase C beta/genética
8.
Mol Carcinog ; 55(12): 2210-2221, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26785288

RESUMO

Limited oxygen availability plays a critical role in the malignant progression of breast cancer by orchestrating a complex modulation of the gene transcription largely dependent on the tumor phenotype. Invasive breast tumors belonging to different molecular subtypes are characterized by over-expression of PLC-ß2, whose amount positively correlates with the malignant evolution of breast neoplasia and supports the invasive potential of breast tumor cells. Here we report that hypoxia modulates the expression of PLC-ß2 in breast tumor cells in a phenotype-related manner, since a decrease of the protein was observed in the BT-474 and MCF7 cell lines while an increase was revealed in MDA-MB-231 cells as a consequence of low oxygen availability. Under hypoxia, the down-modulation of PLC-ß2 was mainly correlated with the decrease of the EMT marker E-cadherin in the BT-474 cells and with the up-regulation of the stem cell marker CD133 in MCF7 cells. The increase of PLC-ß2 induced by low oxygen in MDA-MB-231 cells supports the hypoxia-related reorganization of actin cytoskeleton and sustains invasion capability. In all examined cell lines, but with an opposite role in the ER-positive and ER-negative cells, PLC-ß2 was involved in the hypoxia-induced increase of HIF-1α, known to affect both EMT and CD133 expression. Our data include PLC-ß2 in the complex and interconnected signaling pathways induced by low oxygen availability in breast tumor cells and suggest that the forced modulation of PLC-ß2 programmed on the basis of tumor phenotype may prevent the malignant progression of breast neoplasia as a consequence of intra-tumoral hypoxia. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Hipóxia/genética , Fosfolipase C beta/genética , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/complicações , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Humanos , Hipóxia/complicações , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Fosfolipase C beta/análise , Fosfolipase C beta/metabolismo , Transdução de Sinais
9.
Biochem J ; 463(1): 115-22, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25005557

RESUMO

PU.1 is essential for the differentiation of haemopoietic precursors and is strongly implicated in leukaemogenesis, yet the protein interactions that regulate its activity in different myeloid lineages are still largely unknown. In the present study, by combining fluorescent EMSA (electrophoretic mobility-shift assay) with MS, we reveal the presence of hnRNP K (heterogeneous nuclear ribonucleoprotein K) in molecular complexes that PU.1 forms on the CD11b promoter during the agonist-induced maturation of AML (acute myeloid leukaemia)-derived cells along both the granulocytic and the monocytic lineages. Although hnRNP K and PU.1 act synergistically during granulocytic differentiation, hnRNP K seems to have a negative effect on PU.1 activity during monocytic maturation. Since hnRNP K acts as a docking platform, integrating signal transduction pathways to nucleic acid-directed processes, it may assist PU.1 in activating or repressing transcription by recruiting lineage-specific components of the transcription machinery. It is therefore possible that hnRNP K plays a key role in the mechanisms underlying the specific targeting of protein-protein interactions identified as mediators of transcriptional activation or repression and may be responsible for the block of haemopoietic differentiation.


Assuntos
Antígeno CD11b/metabolismo , Diferenciação Celular , Granulócitos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Monócitos/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Ribonucleoproteínas/metabolismo , Transativadores/metabolismo , Antígeno CD11b/genética , Linhagem Celular Tumoral , Granulócitos/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Monócitos/patologia , Proteínas Proto-Oncogênicas/genética , Ribonucleoproteínas/genética , Transativadores/genética
10.
Life Sci ; 350: 122762, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843994

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by the destruction of pancreatic ß cells, recently estimated to affect approximately 8.75 million individuals worldwide. At variance with conventional management of T1D, which relies on exogenous insulin replacement and insulinotropic drugs, emerging therapeutic strategies include transplantation of insulin-producing cells (IPCs) derived from stem cells or fully reprogrammed differentiated cells. Through the in-depth analysis of the microRNAs (miRNAs) involved in the differentiation of human embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs), into insulin-producing cells, this review provides a comprehensive overview of the molecular mechanisms orchestrating the transformation of precursors to cells producing insulin. In addition to miR-375, involved in all differentiation processes, and to miR-7, mir-145 and miR-9, common to the generation of insulin-producing cells from at least two different sources, the literature reveals panels of miRNAs closely related to precursor cells and associated with specific events of the physiological ß cell maturation. Since the forced modulation of miRNAs can direct cells development towards insulin-producing cells or modify their fate, a more comprehensive knowledge of the miRNAs involved in the cellular events leading to obtain efficient ß cells could improve the diagnostic, prognostic, and therapeutic approaches to diabetes.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Insulina , MicroRNAs , Humanos , MicroRNAs/genética , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Insulina/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
11.
Cells ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786044

RESUMO

Breast cancer includes tumor subgroups with morphological, molecular, and clinical differences. Intrinsic heterogeneity especially characterizes breast tumors with a triple negative phenotype, often leading to the failure of even the most advanced therapeutic strategies. To improve breast cancer treatment, the use of natural agents to integrate conventional therapies is the subject of ever-increasing attention. In this context, garlic (Allium sativum) shows anti-cancerous potential, interfering with the proliferation, motility, and malignant progression of both non-invasive and invasive breast tumor cells. As heterogeneity could be at the basis of variable effects, the main objective of our study was to evaluate the anti-tumoral activity of a garlic extract in breast cancer cells with a triple negative phenotype. Established triple negative breast cancer (TNBC) cell lines from patient-derived xenografts (PDXs) were used, revealing subtype-dependent effects on morphology, cell cycle, and invasive potential, correlated with the peculiar down-modulation of Akt signaling, a crucial regulator in solid tumors. Our results first demonstrate that the effects of garlic on TNBC breast cancer are not unique and suggest that only more precise knowledge of the mechanisms activated by this natural compound in each tumor will allow for the inclusion of garlic in personalized therapeutic approaches to breast cancer.


Assuntos
Alho , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Alho/química , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Animais , Fenótipo , Proliferação de Células/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Regulação para Baixo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cancer ; 12: 165, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24330829

RESUMO

BACKGROUND: Beyond its possible correlation with stemness of tumor cells, CD133/prominin1 is considered an important marker in breast cancer, since it correlates with tumor size, metastasis and clinical stage of triple-negative breast cancers (TNBC), to date the highest risk breast neoplasia. METHODS: To study the correlation between the levels of CD133 expression and the biology of breast-derived cells, CD133low and CD133high cell subpopulations isolated from triple negative MDA-MB-231 cells were compared in terms of malignant properties and protein expression. RESULTS: High expression of CD133 characterizes cells with larger adhesion area, lower proliferation rate and reduced migration speed, indicative of a less undifferentiated phenotype. Conversely, when compared with CD133low cells, CD133high cells show higher invasive capability and increased expression of proteins involved in metastasis and drug-resistance of breast tumors. Among the signalling proteins examined, PLC-ß2 expression inversely correlates with the levels of CD133 and has a role in inducing the CD133high cells to CD133low cells conversion, suggesting that, in TNBC cells, the de-regulation of this PLC isoform is responsible of the switch from an early to a mature tumoral phenotype also by reducing the expression of CD133. CONCLUSIONS: Since CD133 plays a role in determining the invasiveness of CD133high cells, it may constitute an attractive target to reduce the metastatic potential of TNBC. In addition, our data showing that the forced up-regulation of PLC-ß2 counteracts the invasiveness of CD133-positive MDA-MB-231 cells might contribute to identify unexplored key steps responsible for the TNBC high malignancy, to be considered for potential therapeutic strategies.


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Fosfolipase C beta/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Antígeno AC133 , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Invasividade Neoplásica , Fenótipo , Fosfolipase C beta/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia
13.
Antioxidants (Basel) ; 12(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36830057

RESUMO

Voghiera garlic is an Italian white garlic variety which obtained in 2010 the Protected Designation of Origin. It is widely used for culinary purposes or as an ingredient for supplement production due to its phytochemical compositions. The storage conditions seem to be crucial to retain the high quality of garlic bulbs and their by-products, taking into account the high importance of organosulfur and phenolic compounds for the bioactive potency of garlic and its shelf-life. This study aims to examine the effect of storage on the phytochemical composition, biological effects, and shelf-life of Voghiera garlic PDO. In detail, we considered (i) -4 °C (industrial storage) for 3, 6, and 9 months; (ii) +4 °C for 3 months (home conservation), and (iii) -4 °C for 3 months, plus +4 °C for another 3 months. We focused our attention on the organosulfur compounds, total condensed tannins, flavonoids, phenolic compounds, and related antioxidant activity changes during the storage period. To evaluate the bioactive effects, the Voghiera garlic extracts at different storage conditions were administered to a breast cancer cell line, while antioxidant and anti-inflammatory activity was detected using macrophage RAW 264.7 cells. We observed a decrease in sulfur compounds after 6 months which correlated to a decrease in bioactive effects, while the number of antioxidant compounds was stable during the storage period, showing the good effect of refrigerated temperature in maintaining garlic bulb shelf-life.

14.
FEBS J ; 290(22): 5411-5433, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597264

RESUMO

Transglutaminase 2 (TG2), which mediates post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterised by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterise various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and better understand the role of TG2 in cancer.


Assuntos
Neoplasias da Mama , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Feminino , Neoplasias da Mama/metabolismo , Células MCF-7 , Apoptose , Metabolômica , Linhagem Celular Tumoral , Transglutaminases/metabolismo
15.
Diagnostics (Basel) ; 12(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36140539

RESUMO

The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play crucial and partially overlapped functions in solid tumors, in which the different isoforms are variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed family member in cancer, in which it is involved in regulating gene expression at both transcriptional and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA, on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed miR-29b form emerged as a crucial element in the results obtained by various research groups, as the most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple negative phenotype. Even if further studies are required to define exactly the role of each miR-29b, our review highlights its possible implication in phenotype-specific management of breast tumors.

16.
J Pers Med ; 12(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743776

RESUMO

Triple negative breast cancer (TNBC) represents the most aggressive breast tumor, showing a high intrinsic variability in terms of both histopathological features and response to therapies. Blocking the Akt signaling pathway is a well-studied approach in the treatment of aggressive breast tumors. The high homology among the Akt isoforms and their distinct, and possibly opposite, oncogenic functions made it difficult to develop effective drugs. Here we investigated the role of Vav1 as a potential down-regulator of individual Akt isozymes. We revealed that the over-expression of Vav1 in triple negative MDA-MB-231 cells reduced only the Akt2 isoform, acting at the post-transcriptional level through the up-modulation of miR-29b. The Vav1/miR-29b dependent decrease in Akt2 was correlated with a reduced lung colonization of circulating MDA-MB-231 cells. In cell lines established from PDX, the Vav1 induced down-modulation of Akt2 is strongly dependent on miR-29b and occurs only in some TNBC tumors. These findings may contribute to better classify breast tumors having the triple negative phenotype, and suggest that the activation of the Vav1/miR-29b axis, precisely regulating the amount of an Akt isozyme crucial for tumor dissemination, could have great potential for driving more accurate therapies to TNBCs, often not eligible or resistant to treatments.

17.
Cancers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36612174

RESUMO

Since the multifunctionality of transglutaminase 2 (TG2) includes extra- and intracellular functions, we investigated the effects of intracellular administration of TG2 inhibitors in three breast cancer cell lines, MDA-MB-231, MDA-MB-436 and MDA-MB-468, which are representative of different triple-negative phenotypes, using a patch-clamp technique. The first cell line has a highly voltage-dependent a membrane current, which is low in the second and almost absent in the third one. While applying a voltage protocol to responsive single cells, injection of TG2 inhibitors triggered a significant decrease of the current in MDA-MB-231 that we attributed to voltage-dependent K+ channels using the specific inhibitors 4-aminopyridine and astemizole. Since the Kv10.1 channel plays a dominant role as a marker of cell migration and survival in breast cancer, we investigated its relationship with TG2 by immunoprecipitation. Our data reveal their physical interaction affects membrane currents in MDA-MB-231 but not in the less sensitive MDA-MB-436 cells. We further correlated the efficacy of TG2 inhibition with metabolic changes in the supernatants of treated cells, resulting in increased concentration of methyl- and dimethylamines, representing possible response markers. In conclusion, our findings highlight the interference of TG2 inhibitors with the Kv10.1 channel as a potential therapeutic tool depending on the specific features of cancer cells.

18.
Cell Tissue Res ; 345(1): 163-75, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21647562

RESUMO

Vav1 is a critical signal transducer for both the development and function of normal hematopoietic cells, in which it regulates the acquisition of maturation-related properties, including adhesion, motility, and phagocytosis. Vav1 is also important for the agonist-induced maturation of acute promyelocytic leukemia (APL)-derived promyelocytes, in which it promotes the acquisition of a mature phenotype by playing multiple functions at both cytoplasmic and nuclear levels. We investigated the possible role of Vav1 in the differentiation of leukemic precursors to monocytes/macrophages. Tumoral promyelocytes in which Vav1 was negatively modulated were induced to differentiate into monocytes/macrophages with phorbol-12-myristate-13-acetate (PMA) and monitored for their maturation-related properties. We found that Vav1 was crucial for the phenotypical differentiation of tumoral myeloid precursors to monocytes/macrophages, in terms of CD11b expression, adhesion capability and cell morphology. Confocal analysis revealed that Vav1 may synergize with actin in modulating nuclear morphology of PMA-treated adherent cells. Our data indicate that, in tumoral promyelocytes, Vav1 is a component of lineage-specific transduction machineries that can be recruited by various differentiating agents. Since Vav1 plays a central role in the completion of the differentiation program of leukemic promyelocytes along diverse hematopoietic lineages, it can be considered a common target for developing new therapeutic strategies for the various subtypes of myeloid leukemias.


Assuntos
Diferenciação Celular , Leucemia Promielocítica Aguda/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Monócitos/metabolismo , Monócitos/patologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Actinas/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Forma do Núcleo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Inativação Gênica/efeitos dos fármacos , Humanos , Leucemia Promielocítica Aguda/metabolismo , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Fenótipo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Regulação para Cima/efeitos dos fármacos
19.
Exp Cell Res ; 316(1): 38-47, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19747912

RESUMO

Vav1 plays an important role in the all-trans retinoic acid (ATRA)-induced completion of the differentiation program of acute promyelocytic leukemia (APL)-derived cells, in which it strengthens the drug effects and is involved in the regulation of maturation-related proteins, such as the CD11b surface antigen. In both myeloid and lymphoid cells, accumulating data attribute to the multidomain protein Vav1 a functional relevance in the control of gene expression, by direct interaction with chromatin remodeling and/or transcriptional proteins. The present study provides evidence that, in the APL-derived NB4 cell line, Vav1 and the transcription factor PU.1 cooperate in regulating the ATRA-induced CD11b expression. Both chromatin immunoprecipitation (ChIP) experiments and electrophoretic mobility shift assays (EMSA) indicate that Vav1 and PU.1 are recruited to CD11b promoter. Even if the two proteins may participate in diverse protein/DNA complexes, the amounts of complexes including PU.1 seem to be dependent on the interaction of this transcription factor with tyrosine-phosphorylated Vav1. The reported data suggest that the ATRA-induced increase of Vav1 expression and tyrosine phosphorylation may be involved in recruiting PU.1 to its consensus sequence on the CD11b promoter and, ultimately, in regulating CD11b expression during the late stages of neutrophil differentiation of APL-derived promyelocytes.


Assuntos
Antígeno CD11b/genética , Diferenciação Celular/fisiologia , Células Precursoras de Granulócitos/metabolismo , Regiões Promotoras Genéticas/fisiologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Tretinoína/farmacologia , Antígeno CD11b/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , DNA/genética , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Neoplásica da Expressão Gênica/fisiologia , Células Precursoras de Granulócitos/citologia , Células Precursoras de Granulócitos/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Promielocítica Aguda/patologia , Neutrófilos/citologia , Neutrófilos/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-vav/genética , RNA Interferente Pequeno/genética , Estilbenos/farmacologia , Quinase Syk , Transativadores/genética
20.
Biomed Pharmacother ; 142: 112052, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34426261

RESUMO

BACKGROUND: In breast cancer, low oxygen availability is associated with a more aggressive phenotype and with malignant evolution of non-invasive cells. Natural compounds have long attracted attention in cancer treatment, and in recent years garlic (Allium sativum) organosulfur derivatives have been shown to negatively affect growth and invasion of tumor cells. METHODS: Homemade ethanol-based garlic extract (GE) was administered to MCF7 and MCF10DCIS breast tumor cell lines grown under moderate hypoxia. Cell cycle, epithelial-to-mesenchymal transition and cancer stem cell markers were evaluated. RESULTS: We revealed that, in the non-invasive MCF10DCIS cells but not in the post-EMT MCF7 cells, low oxygen availability induced the decrease of E-cadherin and the increase of vimentin and motility, that were prevented by GE administration. In both cell lines, treatment with GE counteracted the up-modulation of CD133 positive cells induced by hypoxia. CONCLUSIONS: Overall, our data firstly revealed anti-cancer properties of garlic in non-invasive breast cancer cells. In particular, they demonstrated a protective role of this natural product against the hypoxia-induced increase of molecules that play crucial roles in tumor evolution, suggesting that garlic derivatives can be considered in new approaches for preventing progression of breast tumors from non-invasive to infiltrating lesions.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Hipóxia Celular/efeitos dos fármacos , Alho/química , Extratos Vegetais/farmacologia , Antígeno AC133/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Etanol/química , Humanos , Células-Tronco Neoplásicas/metabolismo , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA