Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203712

RESUMO

Gut microbiota plays a crucial role in inflammatory bowel diseases (IBD) and can potentially prevent IBD through microbial-derived metabolites, making it a promising therapeutic avenue. Recent evidence suggests that despite an unclear underlying mechanism, red cabbage juice (RCJ) alleviates Dextran Sodium Sulfate (DSS)-induced colitis in mice. Thus, the study aims to unravel the molecular mechanism by which RCJ modulates the gut microbiota to alleviate DSS-induced colitis in mice. Using C57BL/6J mice, we evaluated RCJ's protective role in DSS-induced colitis through two cycles of 3% DSS. Mice were daily gavaged with PBS or RCJ until the endpoint, and gut microbiota composition was analyzed via shotgun metagenomics. RCJ treatment significantly improved body weight (p ≤ 0.001), survival in mice (p < 0.001) and reduced disease activity index (DAI) scores. Further, RCJ improved colonic barrier integrity by enhancing the expression of protective colonic mucins (p < 0.001) and tight junction proteins (p ≤ 0.01) in RCJ + DSS-treated mice compared to the DSS group. Shotgun metagenomic analysis revealed an enrichment of short-chain fatty acids (SCFAs)-producing bacteria (p < 0.05), leading to increased Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) activation (p ≤ 0.001). This, in turn, resulted in repression of the nuclear factor κB (NFκB) signaling pathway, causing decreased production of inflammatory cytokines and chemokines. Our study demonstrates colitis remission in a DSS-induced mouse model, showcasing RCJ as a potential modulator for gut microbiota and metabolites, with promising implications for IBD prevention and treatment.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Homeostase
2.
Vet Clin North Am Small Anim Pract ; 54(3): 523-539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158305

RESUMO

Clinical care of osteosarcoma (OSA) in dogs has seen little change during the past 2 decades, relying on amputation and platinum-based chemotherapy for pain control and survival. Recent advancements offer hope for improved outcomes. Genomic research reveals shared genetic abnormalities between canine and human OSA. Multidimensional imaging provides valuable staging and prognostic information. Limb-sparing approaches including stereotactic body radiation therapy are routine. Ablative therapies such as microwave ablation and histotripsy show promise. Immunotherapy including cell therapy and immune checkpoint inhibition are available. Radiopharmaceuticals are tuned to target OSA cells directly. These innovations may enhance treatment and prognosis for dogs with OSA.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Radiocirurgia , Humanos , Animais , Cães , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Neoplasias Ósseas/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Doenças do Cão/terapia , Prognóstico , Radiocirurgia/veterinária , Osteossarcoma/diagnóstico , Osteossarcoma/terapia , Osteossarcoma/veterinária
3.
Vet Comp Oncol ; 22(2): 165-173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38439693

RESUMO

Advancements in molecular imaging and drug targeting have created a renaissance in the development of radiopharmaceuticals for therapy and theranostics. While some radiopharmaceuticals, such as Na[131I]I, have been used clinically for decades, new agents are being approved using small-molecules, peptides, and antibodies for targeting. As these agents are being developed, the need to understand dosimetry and biologic effects of the systemically delivered radiotherapy becomes more important, particularly as highly potent radiopharmaceuticals using targeted alpha therapy become clinically utilized. As the processes being targeted become more complex, and the radiobiology of different particulate radiation becomes more diverse, models that better recapitulate human cancer and geometry are necessary. Companion animals develop many of the same types of cancer, carrying many of the same genetic drivers as those seen in people, and the scale and geometry of tumours in dogs more closely mimics those in humans than murine tumour models. Key translational challenges in oncology, such as alterations in tumour microenvironment, hypoxia, heterogeneity, and geometry are addressed by companion animal models. This review paper will provide background on radiopharmaceutical targeting techniques, review the use of radiopharmaceuticals in companion animal oncology, and explore the translational value of treating these patients in terms of dosimetry, treatment outcomes, and normal tissue complication rates.


Assuntos
Neoplasias , Animais de Estimação , Compostos Radiofarmacêuticos , Animais , Gatos , Cães , Modelos Animais de Doenças , Doenças do Cão/radioterapia , Neoplasias/veterinária , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Compostos Radiofarmacêuticos/uso terapêutico , Pesquisa Translacional Biomédica
4.
Clin Cancer Res ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042399

RESUMO

Companion dogs have served an important role in cancer immunotherapy research. Sharing similar environments and diets with humans, dogs naturally develop many of the same cancers. These shared exposures, coupled with dogs' diverse genetic makeup, makes them ideal subjects for studying cancer therapies. Tumors like osteosarcoma (cOSA), hemangiosarcoma (cHSA), soft-tissue sarcoma (cSTS), and non-Hodgkin lymphoma (cnHL) occur with greater frequency than their counterpart disease in humans. Canine brain tumors allow study of therapy strategies with imaging, surgery, and radiotherapy equipment in veterinary patients with near-human geometry. Non-specific immunostimulants, autologous and allogeneic vaccines, immune checkpoint inhibitors, and cellular therapies used treating canine cancers have been tested in veterinary clinical trials. These treatments have not only improved outcomes for dogs but have also provided valuable insights for human cancer treatment. Advancements in radiation technology and the development of tools to characterize canine immune responses have further facilitated the ability to translate veterinary clinical trial results to human applications. Advancements in immunotherapy of canine tumors have directly supported translation to human clinical trials leading to approved therapies for cancer patients around the world. The study of immunotherapy in dogs has been and will continue to be a promising avenue for advancing human cancer treatment.

5.
Trends Cancer ; 10(3): 182-184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290969

RESUMO

Cancer remains a leading cause of morbidity and mortality, and a paradigm shift is needed to fundamentally revisit drug development efforts. Pigs share close similarities to humans and may serve as an alternative model. Recently, a transgenic 'Oncopig' line has been generated to induce solid tumors with organ specificity, opening the potential of Oncopigs as a platform for developing novel therapeutic regimens.


Assuntos
Neoplasias , Animais , Suínos , Humanos , Modelos Animais de Doenças , Animais Geneticamente Modificados , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Vet Comp Oncol ; 22(3): 452-456, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39015955

RESUMO

BRAF is one of multiple RAF proteins responsible for the activation of the MAPK cell signalling cascade involved in cell growth, differentiation, and survival. A hotspot BRAFV600E mutation, in exon 15, was determined to be a driver in 100% hairy cell leukaemias, 50%-60% of human melanomas, 30%-50% of human thyroid carcinomas and 10%-20% of human colorectal carcinomas. The orthologous BRAFV595E mutation was seen in 67% and 80% of canine bladder transitional cell carcinomas and prostatic adenocarcinomas, respectively. Since veterinary and human cancers exploit similar pathways and BRAF is highly conserved across species, BRAF can be expected to be a driver in a feline cancer. Primers were developed to amplify exon 15 of feline BRAF. One hundred ninety-six feline tumours were analysed. Sanger sequencing of the 211 bp PCR amplicon was done. A BRAF mutation was found in one tumour, a cutaneous melanoma. The mutation was a BRAFV597E mutation, orthologous to the canine and human hotspot mutations. A common synonymous variant, BRAFT586T, was seen in 23% (47/196) of tumours. This variant was suspected to be a single nucleotide polymorphism. BRAF was not frequently mutated in common feline tumours or in tumour types that frequently harbour BRAF mutations in human and canine cancers. As is seen in canine cancer genomics, the mutational profile in feline tumours may not parallel the histologic equivalent in human oncology.


Assuntos
Doenças do Gato , Éxons , Mutação , Proteínas Proto-Oncogênicas B-raf , Gatos , Animais , Doenças do Gato/genética , Proteínas Proto-Oncogênicas B-raf/genética , Éxons/genética , Neoplasias/veterinária , Neoplasias/genética , Cães , Masculino
7.
World J Oncol ; 15(2): 149-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545477

RESUMO

Pigs are playing an increasingly vital role as translational biomedical models for studying human pathophysiology. The annotation of the pig genome was a huge step forward in translatability of pigs as a biomedical model for various human diseases. Similarities between humans and pigs in terms of anatomy, physiology, genetics, and immunology have allowed pigs to become a comprehensive preclinical model for human diseases. With a diverse range, from craniofacial and ophthalmology to reproduction, wound healing, musculoskeletal, and cancer, pigs have provided a seminal understanding of human pathophysiology. This review focuses on the current research using pigs as preclinical models for cancer research and highlights the strengths and opportunities for studying various human cancers.

8.
Commun Biol ; 7(1): 484, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649520

RESUMO

Spontaneous cancers in companion dogs are robust models of human disease. Tracking tumor-specific immune responses in these models requires reagents to perform species-specific single cell T cell receptor sequencing (scTCRseq). scTCRseq and integration with scRNA data have not been demonstrated on companion dogs with cancer. Here, five healthy dogs, two dogs with T cell lymphoma and four dogs with melanoma are selected to demonstrate applicability of scTCRseq in a cancer immunotherapy setting. Single-cell suspensions of PBMCs or lymph node aspirates are profiled using scRNA and dog-specific scTCRseq primers. In total, 77,809 V(D)J-expressing cells are detected, with an average of 3498 (348 - 5,971) unique clonotypes identified per sample. In total, 29/34, 40/40, 22/22 and 9/9 known functional TRAV, TRAJ, TRBV and TRBJ gene segments are observed respectively. Pseudogene or otherwise defective gene segments are also detected supporting re-annotation of several as functional. Healthy dogs exhibit highly diverse repertoires, T cell lymphomas exhibit clonal repertoires, and vaccine-treated melanoma dogs are dominated by a small number of highly abundant clonotypes. scRNA libraries define large clusters of V(D)J-expressing CD8+ and CD4 + T cells. Dominant clonotypes observed in melanoma PBMCs are predominantly CD8 + T cells, with activated phenotypes, suggesting possible anti-tumor T cell populations.


Assuntos
Receptores de Antígenos de Linfócitos T , Análise de Célula Única , Animais , Cães , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Melanoma/genética , Melanoma/imunologia , Melanoma/veterinária , Doenças do Cão/imunologia , Doenças do Cão/genética , Linfoma de Células T/imunologia , Linfoma de Células T/veterinária , Linfoma de Células T/genética
9.
Front Vet Sci ; 11: 1237084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362299

RESUMO

Introduction: Zoledronic acid (ZOL) is a third-generation bisphosphonate with a higher affinity for bone resorption areas than earlier bisphosphonates (i.e., pamidronate, PAM). In human medicine, ZOL provides improved bone pain relief and prolonged time to skeletal-related events compared to its older generational counterparts. Preclinical studies have investigated its role as an anti-neoplastic agent, both independently and synergistically, with radiation therapy (RT). ZOL and RT act synergistically in several neoplastic human cell lines: prostate, breast, osteosarcoma, and fibrosarcoma. However, the exact mechanism of ZOL's radiosensitization has not been fully elucidated. Methods: We investigated ZOL's ability to induce apoptosis in canine osteosarcoma cell lines treated with various doses of megavoltage external beam radiotherapy. Second, we evaluated cell cycle arrest in ZOL-treated cells to assess several neo-adjuvant time points. Finally, we treated 20 dogs with naturally occurring appendicular OS with 0.1 mg/kg ZOL IV 24 h before receiving 8 Gy of RT (once weekly fraction x 4 weeks). Results: We found that apoptosis was increased in all ZOL-treated cell lines compared to controls, and the combination of ZOL and RT resulted in dissimilar apoptosis between Abrams and D-17 and HMPOS cell lines. Cell cycle arrest (G2/M phase) was minimal and variable between cell lines but perhaps greatest at 48 h post-ZOL treatment. Only 10% of dogs treated with ZOL and RT developed pathologic fractures, compared to 44% of dogs historically treated with PAM and RT (p = 0.027). Discussion: ZOL and RT appear to be a well-tolerated combination treatment scheme for non-surgical candidates; future studies must elucidate the ideal timing of ZOL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA