Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080788

RESUMO

It is important to reduce the danger of collecting flame image data sets by compositing flame images by computer. In this paper, a Global-Local mask Generative Adversarial Network (FGL-GAN) is proposed to address the current status of low quality composite flame images. First, FGL-GAN adopts a hierarchical Global-Local generator structure, to locally render high-quality flame halo and reflection, while also maintaining a consistent global style. Second, FGL-GAN incorporates the fire mask as part of the input of the generation module, which improves the rendering quality of flame halo and reflection. A new data augmentation technique for flame image compositing is used in the network training process to reconstruct the background and reduce the influence of distractors on the network. Finally, FGL-GAN introduces the idea of contrastive learning to speed up network fitting and reduce blurriness in composite images. Comparative experiments show that the images composited by FGL-GAN have achieved better performance in qualitative and quantitative evaluation than mainstream GAN. Ablation study shows the effectiveness of the hierarchical Global-Local generator structure, fire mask, data augmentation, and MONCE loss of FGL-GAN. Therefore, a large number of new flame images can be composited by FGL-GAN, which can provide extensive test data for fire detection equipment, based on deep learning algorithms.

2.
Artigo em Inglês | MEDLINE | ID: mdl-19964419

RESUMO

Package is a critical part in biomedical implantable systems. Many factors affecting the host body and the life time of implantable systems need to be considered. Package becomes more critical for microfabricated systems with wireless charging and communication. This paper presents the first phase study on micro package techniques for short term (30 to 90 days) implantable systems. A MEMS implantable telemetry model system was designed for packaging evaluation. The transmitter was custom designed and fabricated using MOSIS processes and an external receiver was designed and built for data collection. For short term implantable systems, medical grade silicone outer coating is used for "tissue compatibility"; while multilayer polymeric and nanometer-thin metal or ceramic films were used for inner coatings to provide mechanical strength and to block vapor and moisture penetration. The total coating thickness is less than 0.6 mm. The electrical performances (leakage resistance) of test board and model devices coated with various package materials and processes are evaluated in 40 degrees C saline. This paper presents: the model system; the evaluation methods and analysis of failure modes of polymeric coating on test boards; the solution to the failures and suggested coating techniques of polymeric materials; and the evaluation of model systems packaged with multi-layer coatings in 40 degrees C saline. The expected performance of developed packaging method was verified by experiments. Implantable wireless MEMS system can be packaged with thin multilayer materials to have an expected life time greater than 30 days.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Próteses e Implantes , Processamento de Sinais Assistido por Computador/instrumentação , Telemetria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA