Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Autoimmun ; 144: 103181, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38522129

RESUMO

Inflammatory bowel diseases (IBDs) are chronic intestinal disorders often characterized by a dysregulation of T cells, specifically T helper (Th) 1, 17 and T regulatory (Treg) repertoire. Increasing evidence demonstrates that dietary polyphenols from Mangifera indica L. extract (MIE, commonly known as mango) mitigate intestinal inflammation and splenic Th17/Treg ratio. In this study, we aimed to dissect the immunomodulatory and anti-inflammatory properties of MIE using a reverse translational approach, by initially using blood from an adult IBD inception cohort and then investigating the mechanism of action in a preclinical model of T cell-driven colitis. Of clinical relevance, MIE modulates TNF-α and IL-17 levels in LPS spiked sera from IBD patients as an ex vivo model of intestinal barrier breakdown. Preclinically, therapeutic administration of MIE significantly reduced colitis severity, pathogenic T-cell intestinal infiltrate and intestinal pro-inflammatory mediators (IL-6, IL-17A, TNF-α, IL-2, IL-22). Moreover, MIE reversed colitis-induced gut permeability and restored tight junction functionality and intestinal metabolites. Mechanistic insights revealed MIE had direct effects on blood vascular endothelial cells, blocking TNF-α/IFN-γ-induced up-regulation of COX-2 and the DP2 receptors. Collectively, we demonstrate the therapeutic potential of MIE to reverse the immunological perturbance during the onset of colitis and dampen the systemic inflammatory response, paving the way for its clinical use as nutraceutical and/or functional food.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Mangifera , Adulto , Humanos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Mucosa Intestinal , Modelos Animais de Doenças
2.
Ann Rheum Dis ; 82(11): 1415-1428, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37580108

RESUMO

OBJECTIVES: Interleukin (IL) 17s cytokines are key drivers of inflammation that are functionally dysregulated in several human immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA), psoriasis and inflammatory bowel disease (IBD). Targeting these cytokines has some therapeutic benefits, but issues associated with low therapeutic efficacy and immunogenicity for subgroups of patients or IMIDs reduce their clinical use. Therefore, there is an urgent need to improve the coverage and efficacy of antibodies targeting IL-17A and/or IL-17F and IL-17A/F heterodimer. METHODS AND RESULTS: Here, we initially identified a bioactive 20 amino acid IL-17A/F-derived peptide (nIL-17) that mimics the pro-inflammatory actions of the full-length proteins. Subsequently, we generated a novel anti-IL-17 neutralising monoclonal antibody (Ab-IPL-IL-17) capable of effectively reversing the pro-inflammatory, pro-migratory actions of both nIL-17 and IL-17A/F. Importantly, we demonstrated that Ab-IPL-IL-17 has less off-target effects than the current gold-standard biologic, secukinumab. Finally, we compared the therapeutic efficacy of Ab-IPL-IL-17 with reference anti-IL-17 antibodies in preclinical murine models and samples from patients with RA and IBD. We found that Ab-IPL-IL-17 could effectively reduce clinical signs of arthritis and neutralise elevated IL-17 levels in IBD patient serum. CONCLUSIONS: Collectively, our preclinical and in vitro clinical evidence indicates high efficacy and therapeutic potency of Ab-IPL-IL-17, supporting the rationale for large-scale clinical evaluation of Ab-IPL-IL-17 in patients with IMIDs.


Assuntos
Artrite Reumatoide , Produtos Biológicos , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Interleucina-17 , Agentes de Imunomodulação , Citocinas , Doenças Inflamatórias Intestinais/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
3.
Pharmacol Res ; 188: 106659, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646190

RESUMO

Cardiorenal syndrome encompasses a spectrum of disorders involving heart and kidney dysfunction, and sharing common risk factors, such as hypertension and diabetes. Clinical studies have shown that patients with and without diabetes may benefit from using sodium-glucose cotransporter 2 inhibitors to reduce the risk of heart failure and ameliorate renal endpoints. Because the underlying mechanisms remain elusive, we investigated the effects of dapagliflozin on the progression of renal damage, using a model of non-diabetic cardiorenal disease. Dahl salt-sensitive rats were fed a high-salt diet for five weeks and then randomized to dapagliflozin or vehicle for the following six weeks. After treatment with dapagliflozin, renal function resulted ameliorated as shown by decrease of albuminuria and urine albumin-to-creatinine ratio. Functional benefit was accompanied by a decreased accumulation of extracellular matrix and a reduced number of sclerotic glomeruli. Dapagliflozin significantly reduced expression of inflammatory and endothelial activation markers such as NF-κB and e-selectin. Upregulation of pro-oxidant-releasing NADPH oxidases 2 and 4 as well as downregulation of antioxidant enzymes were also counteracted by drug treatment. Our findings also evidenced the modulation of both classic and non-classic renin-angiotensin-aldosterone system (RAAS), and effects of dapagliflozin on gene expression of ion channels/transporters involved in renal homeostasis. Thus, in a non-diabetic model of cardiorenal syndrome, dapagliflozin provides renal protection by modulating inflammatory response, endothelial activation, fibrosis, oxidative stress, local RAAS and ion channels.


Assuntos
Síndrome Cardiorrenal , Diabetes Mellitus , Animais , Ratos , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Síndrome Cardiorrenal/tratamento farmacológico , Síndrome Cardiorrenal/metabolismo , Diabetes Mellitus/tratamento farmacológico , Rim/metabolismo , Ratos Endogâmicos Dahl
4.
Pharmacol Res ; 187: 106595, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470548

RESUMO

Alzheimer's disease (AD) is one of the most prevalent forms of neurodegenerative disorders. Previously, we have shown that in vivo administration of an IL-17 neutralizing antibody (IL-17Ab) rescues amyloid-ß-induced neuro-inflammation and memory impairment, demonstrating the pivotal role of IL-17 in AD-derived cognitive deficit. Recently, AD has been recognized as a more intriguing pathology affecting vascular networks and platelet function. However, not much is known about peripheral vascular inflammation and how pro-inflammatory circulating cells/mediators could affect peripheral vessels' function. This study aimed to evaluate whether IL-17Ab treatment could also impact peripheral AD features, such as systemic inflammation, peripheral vascular dysfunction, and related pro-thrombotic state in a non-genetic mouse model of AD. Mice were injected intracerebroventricularly with Aß1-42 peptide (3 µg/3 µl). To evaluate the systemic/peripheral protective profile of IL-17Ab, we used an intranasal administration of IL-17Ab (1 µg/10 µl) at 5, 12, and 19 days after Aß1-42 injection. Circulating Th17/Treg cells and related cyto-chemokines, haematological parameters, vascular/endothelial reactivity, platelets and coagulation function in mice were evaluated. IL-17Ab treatment ameliorates the systemic/peripheral inflammation, immunological perturbance, vascular/endothelial impairment and pro-thrombotic state, suggesting a key role for this cytokine in fostering inflammatory processes that characterize the multifaced aspects of AD.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Citocinas , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-17 , Fragmentos de Peptídeos/farmacologia
5.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958511

RESUMO

Thrombin-binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers. By adopting its peculiar chair-like G4 structure, TBA can efficiently bind to thrombin, thus producing an anticoagulant effect. The major limit to its therapeutic application is represented by its poor thermal and biological resistance. Therefore, numerous research studies have been focused on the design of TBA analogues with chemical modifications to improve its pharmacokinetic and pharmacodynamic properties. To maintain the functional recognition to protein surface on which TBA anticoagulant activity depends, it is essential to preserve the canonical antiparallel topology of the TBA quadruplex core. In this paper, we have designed three TBA variants with modified G-tetrads to evaluate the effects of nucleobase and sugar moiety chemical modifications on biological properties of TBA, preserving its chair-like G-quadruplex structure. All derivatives contain 8-bromo-2'-deoxyguanosine (GBr) in syn positions, while in the anti-positions, locked nucleic acid guanosine (GLNA) in the analogue TBABL, 2'-O-methylguanosine (GOMe) in TBABM, and 2'-F-riboguanosine (GF) in TBABF is present. CD (Circular Dichroism), CD melting, 1H-NMR (Nuclear Magnetic Resonance), and non-denaturing PAGE (Polyacrylamide Gel Electrophoresis), nuclease stability, prothrombin time (PT) and fibrinogen-clotting assays have been performed to investigate the structural and biological properties of these TBA analogues. The most interesting results have been obtained with TBABF, which revealed extraordinary thermal stability (Tm approximately 40 °C higher than that of TBA), anticoagulant activity almost doubled compared to the original aptamer, and, above all, a never-observed resistance to nucleases, as 50% of its G4 species was still present in 50% FBS at 24 h. These data indicate TBABF as one of the best TBA analogue ever designed and investigated, to the best of our knowledge, overcoming the main limitations to therapeutic applications of this aptamer.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Aptâmeros de Nucleotídeos/química , Trombina/metabolismo , Anticoagulantes/farmacologia
6.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298475

RESUMO

In this paper, we investigate the structural and biological features of G-quadruplex (G4) aptamers as promising antiproliferative compounds affecting the STAT3 signalling pathway. Targeting the STAT3 protein through high-affinity ligands to reduce its levels or activity in cancer has noteworthy therapeutic potential. T40214 (STAT) [(G3C)4] is a G4 aptamer that can influence STAT3 biological outcomes in an efficient manner in several cancer cells. To explore the effects of an extra cytidine in second position and/or of single site-specific replacements of loop residues in generating aptamers that can affect the STAT3 biochemical pathway, a series of STAT and STATB [GCG2(CG3)3C] analogues containing a thymidine residue instead of cytidines was prepared. NMR, CD, UV, and PAGE data suggested that all derivatives adopt dimeric G4 structures like that of unmodified T40214 endowed with higher thermal stability, keeping the resistance in biological environments substantially unchanged, as shown by the nuclease stability assay. The antiproliferative activity of these ODNs was tested on both human prostate (DU145) and breast (MDA-MB-231) cancer cells. All derivatives showed similar antiproliferative activities on both cell lines, revealing a marked inhibition of proliferation, particularly at 72 h at 30 µM. Transcriptomic analysis aimed to evaluate STAT's and STATB's influence on the expression of many genes in MDA-MB-231 cells, suggested their potential involvement in STAT3 pathway modulation, and thus their interference in different biological processes. These data provide new tools to affect an interesting biochemical pathway and to develop novel anticancer and anti-inflammatory drugs.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Neoplasias , Humanos , Masculino , Aptâmeros de Nucleotídeos/química , Linhagem Celular , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Feminino
7.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047736

RESUMO

Breast cancer is the most frequent form of cancer occurring in women of any age. Among the different types, the triple-negative breast cancer (TNBC) subtype is recognized as the most severe form, being associated with the highest mortality rate. Currently, there are no effective treatments for TNBC. For this reason, the research of novel therapeutics is urgently needed. Natural products and their analogs have historically made a major contribution to pharmacotherapy and the treatment of various human diseases, including cancer. In this study, we explored the potential anti-cancer effects of erucin, the most abundant H2S-releasing isothiocyanate present in arugula (Eruca sativa) in MDA-MB-231 cells, a validated in vitro model of TNBC. We found that erucin, in a concentration-dependent manner, significantly inhibited MDA-MB-231 cell proliferation by inducing apoptosis and autophagy. Additionally, erucin prevented intracellular ROS generation promoting the expression of key antioxidant genes and halted MDA-MB-231 cell migration, invasion, and colony formation. In conclusion, using a cellular and molecular biology approach, we show that the consumption of erucin could represent a novel and promising strategy for intervention against TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Apoptose , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Autofagia , Proliferação de Células
8.
Pharmacol Res ; 182: 106283, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662629

RESUMO

In the context of inflammation and immunity, there are fragmented and observational studies relating to the pharmacological activity of Mangifera indica L. and its main active component, mangiferin. Therefore, we aimed to analyze the potential beneficial effects of this plant extract (MIE, 90 % in mangiferin) in a mouse model of gouty arthritis, to allow the evaluation of cellular immune phenotypes and the biochemical mechanism/s beyond MIE activity. Gouty arthritis was induced by the intra-articular administration of MSU crystals (200 µg 20 µl-1), whereas MIE (0.1-10 mg kg-1) or corresponding vehicle (DMSO/saline 1:3) were orally administrated concomitantly with MSU (time 0), 6 and 12 h after the stimulus. Thereafter, knee joint score and oedema were evaluated in addition to western blot analysis for COX-2/mPGES-1 axis. Moreover, the analysis of pro/anti-inflammatory cyto-chemokines coupled with the phenotyping of the cellular infiltrate was performed. Treatment with MIE revealed a dose-dependent reduction in joint inflammatory scores with maximal inhibition observed at 10 mg kg-1. MIE significantly reduced leukocyte infiltration and activation and the expression of different pro-inflammatory cyto-chemokines in inflamed tissues. Furthermore, biochemical analysis revealed that MIE modulated COX-2/mPGES-1 and mPGDS-1/PPARγ pathways. Flow cytometry analysis also highlighted a prominent modulation of inflammatory monocytes (CD11b+/CD115+/LY6Chi), and Treg cells (CD4+/CD25+/FOXP3+) after MIE treatment. Collectively, the results of this study demonstrate a novel function of MIE to positively affect the local and systemic inflammatory/immunological perturbance in the onset and progression of gouty arthritis.


Assuntos
Artrite Gotosa , Mangifera , Extratos Vegetais , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Mangifera/química , Camundongos , Extratos Vegetais/farmacologia , Linfócitos T Reguladores , Células Th17
9.
Pharmacol Res ; 177: 106108, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121122

RESUMO

The increase in intracellular calcium is influenced by cyclic nucleotides (cAMP and cGMP) content, which rating is governed by phosphodiesterases (PDEs) activity.Despite it has been demonstrated a beneficial effect of PDEs inhibitors in different pathological conditions involving SKM, not much is known on the role exerted by cAMP-cGMP/PDEs axis in human SKM contractility. Here, we show that Ssulfhydration of PDEs modulates human SKM contractility in physiological and pathological conditions. Having previously demonstrated that, in the rare human syndrome Malignant Hyperthermia (MH), there is an overproduction of hydrogen sulfide (H2S) within SKM contributing to hyper-contractility, here we have used MH negative diagnosed biopsies (MHN) as healthy SKM, and MH susceptible diagnosed biopsies (MHS) as a pathological model of SKM hypercontractility. The study has been performed on MHS and MHN human biopsies after diagnosis has been made and on primary SKM cells derived from both MHN and MHS biopsies. Our data demonstrate that in normal conditions PDEs are S-sulfhydrated in both quadriceps' biopsies and primary SKM cells. This post translational modification (PTM) negatively regulates PDEs activity with consequent increase of both cAMP and cGMP levels. In hypercontractile biopsies, due to an excessive H2S content, there is an enhanced Ssulfhydration of PDEs that further increases cyclic nucleotides levels contributing to SKM hyper-contractility. Thus, the identification of a new endogenous PTM modulating PDEs activity represents an advancement in SKM physiopathology understanding.


Assuntos
Hipertermia Maligna , Diester Fosfórico Hidrolases , GMP Cíclico , Humanos , Hipertermia Maligna/diagnóstico , Contração Muscular , Músculo Esquelético , Diester Fosfórico Hidrolases/farmacologia
10.
Nucleic Acids Res ; 48(22): 12556-12565, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270863

RESUMO

The thrombin binding aptamer (TBA) possesses promising antiproliferative properties. However, its development as an anticancer agent is drastically impaired by its concomitant anticoagulant activity. Therefore, suitable chemical modifications in the TBA sequence would be required in order to preserve its antiproliferative over anticoagulant activity. In this paper, we report structural investigations, based on circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR), and biological evaluation of four pairs of enantiomeric heterochiral TBA analogues. The four TBA derivatives of the d-series are composed by d-residues except for one l-thymidine in the small TT loops, while their four enantiomers are composed by l-residues except for one d-thymidine in the same TT loop region. Apart from the left-handedness for the l-series TBA derivatives, CD and NMR measurements have shown that all TBA analogues are able to adopt the antiparallel, monomolecular, 'chair-like' G-quadruplex structure characteristic of the natural D-TBA. However, although all eight TBA derivatives are endowed with remarkable cytotoxic activities against colon and lung cancer cell lines, only TBA derivatives of the l-series show no anticoagulant activity and are considerably resistant in biological environments.


Assuntos
Aptâmeros de Nucleotídeos/genética , Quadruplex G , Ligação Proteica/genética , Trombina/genética , Anticoagulantes/química , Anticoagulantes/uso terapêutico , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Estereoisomerismo , Timidina/genética
11.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499249

RESUMO

In this paper, we study the biological properties of two TBA analogs containing one and two extra G-tetrads, namely TBAG3 and TBAG4, respectively, and two further derivatives in which one of the small loops at the bottom (TBAG41S) or the large loop at the top (TBAG4GS) of the TBAG4 structure has been completely modified by replacing all loop residues with abasic site mimics. The therapeutical development of the TBA was hindered by its low thermodynamic and nuclease stability, while its potential as an anticancer/antiproliferative molecule is also affected by the anticoagulant activity, being a side effect in this case. In order to obtain suitable TBA analogs and to explore the involvement of specific aptamer regions in biological activity, the antiproliferative capability against DU 145 and MDAMB 231 cancer cell lines (MTT), the anticoagulant properties (PT), the biological degradability (nuclease stability assay) and nucleolin (NCL) binding ability (SPR) of the above described TBA derivatives have been tested. Interestingly, none of the TBA analogs exhibits an anticoagulant activity, while all of them show antiproliferative properties to the same extent. Furthermore, TBAG4 displays extraordinary nuclease stability and promising antiproliferative properties against breast cancer cells binding NCL efficiently. These results expand the range of G4-structures targeting NCL and the possibility of developing novel anticancer and antiviral drugs.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Neoplasias , Humanos , Aptâmeros de Nucleotídeos/química , Anticoagulantes/química , Trombina/metabolismo
12.
FASEB J ; 33(2): 2809-2822, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30303744

RESUMO

Nonalcoholic steatohepatitis (NASH) is associated with an increased risk of developing cardiovascular complications and mortality, suggesting that treatment of NASH might benefit from combined approaches that target the liver and the cardiovascular components of NASH. Using genetic and pharmacologic approaches, we show that G protein-coupled bile acid-activated receptor 1 (GPBAR1) agonism reverses liver and vascular damage in mouse models of NASH. NASH is associated with accelerated vascular inflammation representing an independent risk factor for development of cardiovascular diseases and cardiovascular-related mortality. GPBAR1, also known as TGR5, is a G protein-coupled receptor for secondary bile acids that reduces inflammation and promotes energy expenditure. Using genetic and pharmacologic approaches, we investigated whether GPBAR1 agonism by 6ß-ethyl-3α,7ß-dihydroxy-5ß-cholan-24-ol (BAR501) reverses liver and vascular damage induced by exposure to a diet enriched in fat and fructose (HFD-F). Treating HFD-F mice with BAR501 reversed liver injury and promoted the browning of white adipose tissue in a Gpbar1-dependent manner. Feeding HFD-F resulted in vascular damage, as shown by the increased aorta intima-media thickness and increased expression of inflammatory genes (IL-6,TNF-α, iNOS, and F4/80) and adhesion molecules (VCAM, intercellular adhesion molecule-1, and endothelial selectin) in the aorta, while reducing the expression of genes involved in NO and hydrogen sulfide generation, severely altering vasomotor activities of aortic rings in an ex vivo assay. BAR501 reversed this pattern in a Gpbar1-dependent manner, highlighting a potential role for GPBAR1 agonism in treating the liver and vascular component of NASH.-Carino, A., Marchianò, S., Biagioli, M., Bucci, M., Vellecco, V., Brancaleone, V., Fiorucci, C., Zampella, A., Monti, M. C., Distrutti, E., Fiorucci, S. Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis.


Assuntos
Colestanóis/farmacologia , Modelos Animais de Doenças , Inflamação/prevenção & controle , Hepatopatias/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Receptores Acoplados a Proteínas G/agonistas , Doenças Vasculares/prevenção & controle , Animais , Dieta Hiperlipídica/efeitos adversos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Receptores Acoplados a Proteínas G/fisiologia , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
13.
Pharmacol Res ; 159: 105039, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565313

RESUMO

The gasotransmitter hydrogen sulfide (H2S) is involved in the regulation of the vascular tone and an impairment of its endogenous production may play a role in hypertension. Thus, the administration of exogenous H2S may be a possible novel and effective strategy to control blood pressure. Some natural and synthetic sulfur compounds are suitable H2S-donors, exhibiting long-lasting H2S release; however, novel H2S-releasing agents are needed to improve the pharmacological armamentarium for the treatment of cardiovascular diseases. For this purpose, N-phenylthiourea (PTU) and N,N'-diphenylthiourea (DPTU) compounds have been investigated as potential H2S-donors. The thioureas showed long-lasting H2S donation in cell free environment and in human aortic smooth muscle cells (HASMCs). In HASMCs, DPTU caused membrane hyperpolarization, mediated by activation of KATP and Kv7 potassium channels. The thiourea derivatives promoted vasodilation in rat aortic rings, which was abolished by KATP and Kv7 blockers. The vasorelaxing effects were also observed in angiotensin II-constricted coronary vessels. In conclusion, thiourea represents an original H2S-donor functional group, which releases H2S with slow and long lasting kinetic, and promotes typical H2S-mediated vascular effects. Such a moiety will be extremely useful for developing original cardiovascular drugs and new chemical tools for investigating the pharmacological roles of H2S.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Feniltioureia/farmacologia , Tioureia/análogos & derivados , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Humanos , Preparação de Coração Isolado , Canais KATP/agonistas , Canais KATP/metabolismo , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/metabolismo , Masculino , Potenciais da Membrana , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos Wistar , Tioureia/farmacologia
14.
Bioorg Chem ; 76: 202-209, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29190476

RESUMO

BACKGROUND: The thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative activities. Its chemico-physical and/or biological properties can be tuned by the site-specific replacement of selected residues. METHODS: Four oligodeoxynucleotides (ODNs) based on the TBA sequence (5'-GGTTGGTGTGGTTGG-3') and containing 2'-deoxyuridine (U) or 5-bromo-2'-deoxyuridine (B) residues at positions 4 or 13 have been investigated by NMR and CD techniques. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay) have been tested and compared with two further ODNs containing 5-hydroxymethyl-2'-deoxyuridine (H) residues in the same positions, previously investigated. RESULTS: The CD and NMR data suggest that all the investigated ODNs are able to form G-quadruplexes strictly resembling that of TBA. The introduction of B residues in positions 4 or 13 increases the melting temperature of the modified aptamers by 7 °C. The replacement of thymidines with U in the same positions results in an enhanced anticoagulant activity compared to TBA, also at low ODN concentration. Although all ODNs show antiproliferative properties, only TBA derivatives containing H in the positions 4 and 13 lose the anticoagulant activity and remarkably preserve the antiproliferative one. CONCLUSIONS: All ODNs have shown antiproliferative activities against two cancer cell lines but only those with U and B are endowed with anticoagulant activities similar or improved compared to TBA. GENERAL SIGNIFICANCE: The appropriate site-specific replacement of the residues in the TT loops of TBA with commercially available thymine analogues is a useful strategy either to improve the anticoagulant activity or to preserve the antiproliferative properties by quenching the anticoagulant ones.


Assuntos
Anticoagulantes/farmacologia , Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Anticoagulantes/síntese química , Anticoagulantes/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Linhagem Celular Tumoral , Dicroísmo Circular , Estabilidade de Medicamentos , Quadruplex G , Humanos , Temperatura de Transição
15.
Am J Physiol Heart Circ Physiol ; 312(1): H21-H32, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27765751

RESUMO

Bile acids are end products of cholesterol metabolism generated in the liver and released in the intestine. Primary and secondary bile acids are the result of the symbiotic relation between the host and intestinal microbiota. In addition to their role in nutrient absorption, bile acids are increasingly recognized as regulatory signals that exert their function beyond the intestine by activating a network of membrane and nuclear receptors. The best characterized of these bile acid-activated receptors, GPBAR1 (also known as TGR5) and the farnesosid-X-receptor (FXR), have also been detected in the vascular system and their activation mediates the vasodilatory effects of bile acids in the systemic and splanchnic circulation. GPBAR1, is a G protein-coupled receptor, that is preferentially activated by lithocholic acid (LCA) a secondary bile acid. GPBAR1 is expressed in endothelial cells and liver sinusoidal cells (LSECs) and responds to LCA by regulating the expression of both endothelial nitric oxide synthase (eNOS) and cystathionine-γ-lyase (CSE), an enzyme involved in generation of hydrogen sulfide (H2S). Activation of CSE by GPBAR1 ligands in LSECs is due to genomic and nongenomic effects, involves protein phosphorylation, and leads to release of H2S. Despite that species-specific effects have been described, vasodilation caused by GPBAR1 ligands in the liver microcirculation and aortic rings is abrogated by inhibition of CSE but not by eNOS inhibitor. Vasodilation caused by GPBAR1 (and FXR) ligands also involves large conductance calcium-activated potassium channels likely acting downstream to H2S. The identification of GPBAR1 as a vasodilatory receptor is of relevance in the treatment of complex disorders including metabolic syndrome-associated diseases, liver steatohepatitis, and portal hypertension.


Assuntos
Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasodilatação/fisiologia , Aorta , Cistationina gama-Liase/metabolismo , Células Endoteliais/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Ácido Litocólico/metabolismo , Fígado/metabolismo , Circulação Hepática , Óxido Nítrico Sintase Tipo III/metabolismo , Sistema Porta
16.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1213-1221, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27663232

RESUMO

BACKGROUND: The thrombin binding aptamer (TBA) is endowed with antiproliferative properties but its potential development is counteracted by the concomitant anticoagulant activity. METHODS: Five oligonucleotides (ODNs) based on TBA sequence (GGTTGGTGTGGTTGG) and containing l-residues or both l-residues and inversion of polarity sites have been investigated by NMR and CD techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay), and their resistance in fetal bovine serum have been tested. RESULTS: CD and NMR data suggest that the investigated ODNs are able to form right- and left-handed G-quadruplex structures. All ODNs do not retain the anticoagulant activity characteristic of TBA but are endowed with a significant antiproliferative activity against two cancerous cell lines. Their resistance in biological environment after six days is variable, depending on the ODN. CONCLUSIONS: A comparison between results and literature data suggests that the antiproliferative activity of the TBA analogues investigated could depends on two factors: a) biological pathways and targets different from those already identified or proposed for other antiproliferative G-quadruplex aptamers, and b) the contribution of the guanine-based degradation products. GENERAL SIGNIFICANCE: Modified TBA analogues containing l-residues and inversion of polarity sites lose the anticoagulant activity but gain antiproliferative properties against two cancer cell lines. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Trombina/farmacologia , Anticoagulantes/química , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Coagulação Sanguínea/efeitos dos fármacos , Dicroísmo Circular , Estabilidade de Medicamentos , Esterases/química , Quadruplex G , Células HCT116 , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Neoplasias/patologia , Ligação Proteica , Relação Estrutura-Atividade , Trombina/análogos & derivados , Trombina/química , Trombina/metabolismo , Fatores de Tempo
17.
Nucleic Acids Res ; 43(22): 10602-11, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26582916

RESUMO

Here we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy, molecular modelling, differential scanning calorimetry and prothrombin time assay, on analogues of the thrombin binding aptamer (TBA) in which individual thymidines were replaced by 5-fluoro-2'-deoxyuridine residues. The whole of the data clearly indicate that all derivatives are able to fold in a G-quadruplex structure very similar to the 'chair-like' conformation typical of the TBA. However, only ODNs TBA-F4: and TBA-F13: have shown a remarkable improvement both in the melting temperature (ΔTm ≈ +10) and in the anticoagulant activity in comparison with the original TBA. These findings are unusual, particularly considering previously reported studies in which modifications of T4 and T13 residues in TBA sequence have clearly proven to be always detrimental for the structural stability and biological activity of the aptamer. Our results strongly suggest the possibility to enhance TBA properties through tiny straightforward modifications.


Assuntos
Anticoagulantes/química , Aptâmeros de Nucleotídeos/química , Flúor/química , Dicroísmo Circular , Desoxirribonucleases , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Desnaturação de Ácido Nucleico , Tempo de Protrombina , Termodinâmica , Timidina/química
18.
Nucleic Acids Res ; 43(16): 7702-16, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26250112

RESUMO

Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13.


Assuntos
Anticoagulantes/química , Antineoplásicos/química , Aptâmeros de Nucleotídeos/química , Anticoagulantes/farmacologia , Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Compostos de Benzil/química , Testes de Coagulação Sanguínea , Proliferação de Células/efeitos dos fármacos , Fibrinogênio , Quadruplex G , Células HeLa , Humanos , Modelos Moleculares , Desnaturação de Ácido Nucleico , Oligonucleotídeos/síntese química , Tempo de Protrombina
19.
Clin Sci (Lond) ; 130(1): 35-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26460077

RESUMO

Hydrogen sulfide is an endogenous gasotransmitter and its mechanism of action involves activation of ATP-sensitive K(+) channels and phosphodiesterase inhibition. As both mechanisms are potentially involved in malignant hyperthermia (MH), in the present study we addressed the involvement of the L-cysteine/hydrogen sulfide pathway in MH. Skeletal muscle biopsies obtained from 25 MH-susceptible (MHS) and 56 MH-negative (MHN) individuals have been used to perform the in vitro contracture test (IVCT). Quantitative real-time PCR (qPCR) and Western blotting studies have also been performed. Hydrogen sulfide levels are measured in both tissue samples and plasma. In MHS biopsies an increase in cystathionine ß-synthase (CBS) occurs, as both mRNA and protein expression compared with MHN biopsies. Hydrogen sulfide biosynthesis is increased in MHS biopsies (0.128±0.12 compared with 0.943±0.13 nmol/mg of protein per min for MHN and MHS biopsies, respectively; P<0.01). Addition of sodium hydrosulfide (NaHS) to MHS samples evokes a response similar, in the IVCT, to that elicited by either caffeine or halothane. Incubation of MHN biopsies with NaHS, before caffeine or halothane challenge, switches an MHN to an MHS response. In conclusion we demonstrate the involvement of the L-cysteine/hydrogen sulfide pathway in MH, giving new insight into MH molecular mechanisms. This finding has potential implications for clinical care and could help to define less invasive diagnostic procedures.


Assuntos
Cistationina beta-Sintase/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hipertermia Maligna/enzimologia , Músculo Esquelético/enzimologia , Biópsia , Cafeína/farmacologia , Estudos de Casos e Controles , Cistationina beta-Sintase/genética , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica , Glibureto/farmacologia , Halotano/farmacologia , Humanos , Técnicas In Vitro , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Hipertermia Maligna/genética , Hipertermia Maligna/fisiopatologia , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais , Sulfetos/metabolismo , Sulfetos/farmacologia , Regulação para Cima
20.
Pharmacol Res ; 111: 556-562, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27378567

RESUMO

Soluble guanylate cyclase (sGC) is a receptor for nitric oxide (NO). Binding of NO to ferrous (Fe(2+)) heme increases its catalytic activity, leading to the production of cGMP from GTP. Hydrogen sulfide (H2S) is a signaling molecule that exerts both direct and indirect anti-oxidant effects. In the present, study we aimed to determine whether H2S could regulate sGC redox state and affect its responsiveness to NO-releasing agents and sGC activators. Using cultured rat aortic smooth muscle cells, we observed that treatment with H2S augmented the response to the NO donor DEA/NO, while attenuating the response to the heme-independent activator BAY58-2667 that targets oxidized sGC. Similarly, overexpression of H2S-synthesizing enzyme cystathionine-γ lyase reduced the ability of BAY58-2667 to promote cGMP accumulation. In experiments with phenylephrine-constricted mouse aortic rings, treatment with rotenone (a compound that increases ROS production), caused a rightward shift of the DEA/NO concentration-response curve, an effect partially restored by H2S. When rings were pre-treated with H2S, the concentration-response curve to BAY 58-2667 shifted to the right. Using purified recombinant human sGC, we observed that treatment with H2S converted ferric to ferrous sGC enhancing NO-donor-stimulated sGC activity and reducing BAY 58-2667-triggered cGMP formation. The present study identified an additional mechanism of cross-talk between the NO and H2S pathways at the level of redox regulation of sGC. Our results provide evidence that H2S reduces sGC heme Fe, thus, facilitating NO-mediated cellular signaling events.


Assuntos
Heme/metabolismo , Sulfeto de Hidrogênio/farmacologia , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Benzoatos/farmacologia , Células Cultivadas , Cistationina gama-Liase/metabolismo , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Doadores de Óxido Nítrico/farmacologia , Oxirredução , Fenilefrina , Compostos de Amônio Quaternário/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA