Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(5): 2722-2742, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33559467

RESUMO

Despite ongoing management efforts, phosphorus (P) loading from agricultural landscapes continues to impair water quality. Wastewater treatment research has enhanced our knowledge of microbial mechanisms influencing P cycling, especially regarding microbes known as polyphosphate accumulating organisms (PAOs) that store P as polyphosphate (polyP) under oxic conditions and release P under anoxic conditions. However, there is limited application of PAO research to reduce agricultural P loading and improve water quality. Herein, we conducted a meta-analysis to identify articles in Web of Science on polyP and its use by PAOs across five disciplines (i.e., wastewater treatment, terrestrial, freshwater, marine, and agriculture). We also summarized research that provides preliminary support for PAO-mediated P cycling in natural habitats. Terrestrial, freshwater, marine, and agriculture disciplines had fewer polyP and PAO articles compared to wastewater treatment, with agriculture consistently having the least. Most meta-analysis articles did not overlap disciplines. We found preliminary support for PAOs in natural habitats and identified several knowledge gaps and research opportunities. There is an urgent need for interdisciplinary research linking PAOs, polyP, and oxygen availability with existing knowledge of P forms and cycling mechanisms in natural and agricultural environments to improve agricultural P management strategies and achieve water quality goals.


Assuntos
Reatores Biológicos , Polifosfatos , Agricultura , Fósforo , Águas Residuárias , Qualidade da Água
2.
Environ Sci Technol ; 53(7): 3620-3633, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30830765

RESUMO

Little is known about the regional extent and variability of nitrate from atmospheric deposition that is transported to streams without biological processing in forests. We measured water chemistry and isotopic tracers (δ18O and δ15N) of nitrate sources across the Northern Forest Region of the U.S. and Canada and reanalyzed data from other studies to determine when, where, and how unprocessed atmospheric nitrate was transported in catchments. These inputs were more widespread and numerous than commonly recognized, but with high spatial and temporal variability. Only 6 of 32 streams had high fractions (>20%) of unprocessed atmospheric nitrate during baseflow. Seventeen had high fractions during stormflow or snowmelt, which corresponded to large fractions in near-surface soil waters or groundwaters, but not deep groundwater. The remaining 10 streams occasionally had some (<20%) unprocessed atmospheric nitrate during stormflow or baseflow. Large, sporadic events may continue to be cryptic due to atmospheric deposition variation among storms and a near complete lack of monitoring for these events. A general lack of observance may bias perceptions of occurrence; sustained monitoring of chronic nitrogen pollution effects on forests with nitrate source apportionments may offer insights needed to advance the science as well as assess regulatory and management schemes.


Assuntos
Florestas , Nitratos , Canadá , Monitoramento Ambiental , Nitrogênio , Rios
3.
Nature ; 494(7437): 349-52, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23334410

RESUMO

Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE(e): above-ground net primary production/evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE(e) in drier years that increased significantly with drought to a maximum WUE(e) across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought--that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE(e) may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands.


Assuntos
Mudança Climática/estatística & dados numéricos , Secas/estatística & dados numéricos , Ecossistema , Plantas/metabolismo , Água/metabolismo , Mudança Climática/história , Secas/história , História do Século XX , História do Século XXI , Poaceae/metabolismo , Chuva , Árvores/metabolismo , Ciclo Hidrológico
4.
J Environ Qual ; 46(6): 1472-1479, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29293836

RESUMO

Cranberry ( Ait.) production in Massachusetts represents one-fourth of the US cranberry supply, but water quality concerns, water use, and wetland protection laws challenge the future viability of the state's cranberry industry. Pond water used for harvest and winter flooding accounts for up to two-thirds of phosphorus (P) losses in drainage waters. Consequently, use of P sorbing salts to treat pond water holds promise in the mitigation of P losses from cranberry farms. Laboratory evaluation of aluminum (Al)-, iron (Fe)-, and calcium (Ca)-based salts was conducted to determine the application rate required for reducing P in shallow (0.4 m) and deep (3.2 m) water ponds used for cranberry production. Limited P removal (<22%) with calcium carbonate and calcium sulfate was consistent with their relatively low solubility in water. Calcium hydroxide reduced total P up to 49%, but increases in pond water pH (>8) could be detrimental to cranberry production. Ferric sulfate and aluminum sulfate applications of 15 mg L (ppm) resulted in near-complete removal of total P, which decreased from 49 ± 3 to <10 µg P L (ppb). However, ferric sulfate application lowered pH below the recommend range for cranberry soils. Field testing of aluminum sulfate demonstrated that at a dose of 15 mg L (∼1.4 Al mg L), total P in pond water was reduced by 78 to 94%. Laboratory and field experiments support the recommendation of aluminum sulfate as a cost-effective remedial strategy for reducing elevated P in surface water used for cranberry production.


Assuntos
Fósforo/análise , Vaccinium macrocarpon , Poluentes Químicos da Água/análise , Fazendas , Água Doce , Lagoas
5.
J Environ Qual ; 46(6): 1270-1286, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29293841

RESUMO

Phosphorus (P) Index evaluations are critical to advancing nutrient management planning in the United States. However, most assessments until now have focused on the risks of P losses in surface runoff. In artificially drained agroecosystems of the Atlantic Coastal Plain, subsurface flow is the predominant mode of P transport, but its representation in most P Indices is often inadequate. We explored methods to evaluate the subsurface P risk routines of five P Indices from Delaware, Maryland (two), Virginia, and North Carolina using available water quality and soils datasets. Relationships between subsurface P risk scores and published dissolved P loads in leachate (Delaware, Maryland, and North Carolina) and ditch drainage (Maryland) were directionally correct and often statistically significant, yet the brevity of the observation periods (weeks to several years) and the limited number of sampling locations precluded a more robust assessment of each P Index. Given the paucity of measured P loss data, we then showed that soil water extractable P concentrations at depths corresponding with the seasonal high water table (WEP) could serve as a realistic proxy for subsurface P losses in ditch drainage. The associations between WEP and subsurface P risk ratings reasonably mirrored those obtained with sparser water quality data. As such, WEP is seen as a valuable metric that offers interim insight into the directionality of subsurface P risk scores when water quality data are inaccessible. In the long term, improved monitoring and modeling of subsurface P losses clearly should enhance the rigor of future P Index appraisals.


Assuntos
Agricultura , Fósforo/análise , Solo , Delaware , North Carolina , Movimentos da Água
6.
J Environ Qual ; 46(2): 302-310, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28380555

RESUMO

Urea-N is linked to harmful algal blooms in lakes and estuaries, and urea-N-based fertilizers have been implicated as a source. However, the export of urea-N-based fertilizers appears unlikely, as high concentrations of urea-N are most commonly found in surface waters outside periods of fertilization. To evaluate possible autochthonous production of urea-N, we monitored urea-N released from drainage ditch sediments using mesocosms. Sediments from a cleaned (recently dredged) drainage ditch, uncleaned ditch, forested ditch, riparian wetland, and an autoclaved sand control were isolated in mesocosms and flooded for 72 h to quantify urea-N, NH-N, and NO-N in the floodwater. Sediments were flooded with different N-amended solutions (distilled HO, 1.5 mg L NH-N, 3.0 mg L NH-N, 2.6 mg L NO-N, or 5.1 mg L NO-N) and incubated at three water temperatures (16, 21, and 27°C). Urea-N concentrations in mesocosms representing uncleaned and cleaned drainage ditches were significantly greater than nonagricultural sediments and controls. While flooding sediments with N-enriched solution had no clear effect on urea-N, warmer (27°C) temperatures resulted in significantly higher urea-N. Data collected from field ditches that were flooded by a summer rainstorm showed increases in urea-N that mirrored the mesocosm experiment. We postulate that concentrations of urea-N in ditches that greatly exceed environmental thresholds are mediated by biological production in sediments and release to stagnant surface water. Storm-driven urea-N export from ditches could elevate the risk of harmful algal blooms downstream in receiving waters despite the dilution effect.


Assuntos
Agricultura , Ureia/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Meio Ambiente , Inundações , Sedimentos Geológicos
7.
J Environ Qual ; 46(6): 1257-1269, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29293860

RESUMO

The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure.


Assuntos
Agricultura , Solo/química , Poluentes da Água , Previsões , New York , Nitrogênio , Pennsylvania , Fósforo , Wisconsin
8.
J Environ Qual ; 45(3): 1062-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27136175

RESUMO

Studies of harmful algal blooms and associated urea concentrations in the Chesapeake Bay and in coastal areas around the globe strongly suggest that elevated urea concentrations are associated with harmful algal blooms. The observed increased frequency and toxicity of these blooms in recent decades has been correlated with increased agricultural use of N inputs and increased use of urea as a preferred form of commercial N. This rainfall simulation study sought to assess the potential for different N fertilizers and manures to contribute to urea in runoff from a Coastal Plain soil on the Eastern Shore of Maryland. Under worst-case conditions, ~1% of urea-N applied as commercial fertilizer and surface-applied poultry litter was lost in runoff in a simulated rainfall event, roughly equivalent to a 1-yr return period rain storm in the study area, 12 h after application. Cumulative urea-N losses, including four subsequent weekly rainfall events, approached 1.7% from urea-N fertilizer containing a urease inhibitor. Urea-N loss from incorporated poultry litter was negligible, and losses from dairy manure were intermediate. These losses are likely confined to hydrological contributing areas that extend several meters from a drainage ditch or stream for storms with frequent recurrence intervals. Cumulative dissolved N losses in runoff (urea-N + ammonium-N + nitrate-N) as a proportion of total applied plant-available N were <5%, suggesting that most of the applied N was lost by other pathways or was immobilized in soil. Results also highlight the potential for simple management options, such as shallow incorporation or timing, to greatly reduce urea runoff losses.


Assuntos
Fertilizantes , Nitrogênio , Ureia , Animais , Esterco , Fósforo , Chuva , Movimentos da Água
9.
J Environ Qual ; 45(4): 1215-25, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27380069

RESUMO

Watershed models such as the Soil Water Assessment Tool (SWAT) and the Agricultural Policy Environmental EXtender (APEX) are widely used to assess the fate and transport of agricultural nutrient management practices on soluble and particulate phosphorus (P) loss in runoff. Soil P-cycling routines used in SWAT2012 revision 586, however, do not simulate the short-term effects of applying a concentrated source of soluble P, such as manure, to the soil surface where it is most vulnerable to runoff. We added a new set of soil P routines to SWAT2012 revision 586 to simulate surface-applied manure at field and subwatershed scales within Mahantango Creek watershed in south-central Pennsylvania. We corroborated the new P routines and standard P routines in two versions of SWAT (conventional SWAT, and a topographically driven variation called TopoSWAT) for a total of four modeling "treatments". All modeling treatments included 5 yr of measured data under field-specific, historical management information. Short-term "wash off" processes resulting from precipitation immediately following surface application of manures were captured with the new P routine whereas the standard routines resulted in losses regardless of manure application. The new routines improved sensitivity to key factors in nutrient management (i.e., timing, rate, method, and form of P application). Only the new P routines indicated decreases in soluble P losses for dairy manure applications at 1, 5, and 10 d before a storm event. The new P routines also resulted in more variable P losses when applying manure versus commercial fertilizer and represented increases in total P losses, as compared with standard P routines, with rate increases in dairy manure application (56,000 to 84,000 L ha). The new P routines exhibited greater than 50% variation among proportions of organic, particulate, and soluble P corresponding to spreading method. In contrast, proportions of P forms under the standard P routines varied less than 20%. Results suggest similar revisions to other agroecosystem watershed models would be appropriate.


Assuntos
Esterco , Fósforo , Movimentos da Água , Agricultura , Pennsylvania , Solo , Água
10.
J Environ Qual ; 44(4): 1326-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26437115

RESUMO

Limited research exists on the sources of nitrogen (N) in cranberry floodwaters, which have been identified as a prominent cause of concern to watershed N loading in the cranberry-producing region of southeastern Massachusetts. In this study, we used naturally occurring chemical and isotopic tracers to infer the sources of N transported by harvest floodwaters. In 2012, the cranberry bed was a net source of total N (TN), exporting 0.8 kg N ha (primarily as organic N) to a nearby lake. Systematic increases in TN concentration were associated with increasing fractions of pre-event soil water and groundwater ("porewater") in discharge. Results showed that N concentrations in porewater generally derive from the natural mixing of soil water and perched groundwater within the cranberry bed but locally display a connection to deep groundwater where the underlying peat is absent. These findings illustrate the environmental significance of stored pools of porewater in cranberry beds and the ability to focus on moments of disproportionate N transfer to most efficiently curtail floodwater N losses (i.e., 58% of N export occurred in only 22% of floodwater discharge).

11.
J Environ Qual ; 44(3): 910-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024271

RESUMO

Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO-N concentrations in seep and stream water were affected by NO-N processing along seep surface flow paths and by upslope applications of N from fertilizers and manures. The research was conducted in two headwater agricultural watersheds, FD36 (40 ha) and RS (45 ha), which are fed, in part, by a shallow fractured aquifer system possessing high (3-16 mg L) NO-N concentrations. Data from in-seep monitoring showed that NO-N concentrations generally decreased downseep (top to bottom), indicating that most seeps retained or removed a fraction of delivered NO-N (16% in FD36 and 1% in RS). Annual mean N applications in upslope fields (as determined by yearly farmer surveys) were highly correlated with seep NO-N concentrations in both watersheds (slope: 0.06; = 0.79; < 0.001). Strong positive relationships also existed between seep and stream NO-N concentrations in FD36 (slope: 1.01; = 0.79; < 0.001) and in RS (slope: 0.64; = 0.80; < 0.001), further indicating that N applications control NO-N concentrations at the watershed scale. Our findings clearly point to NO-N leaching from upslope agricultural fields as the primary driver of NO-N losses from seeps to streams in these watersheds and therefore suggest that appropriate management strategies (cover crops, limiting fall/winter nutrient applications, decision support tools) be targeted in these zones.

12.
J Environ Qual ; 52(4): 873-885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37145888

RESUMO

Phosphorus (P) budgets can be useful tools for understanding nutrient cycling and quantifying the effectiveness of nutrient management planning and policies; however, uncertainties in agricultural nutrient budgets are not often quantitatively assessed. The objective of this study was to evaluate uncertainty in P fluxes (fertilizer/manure application, atmospheric deposition, irrigation, crop removal, surface runoff, and leachate) and the propagation of these uncertainties to annual P budgets. Data from 56 cropping systems in the P-FLUX database, which spans diverse rotations and landscapes across the United States and Canada, were evaluated. Results showed that across cropping systems, average annual P budget was 22.4 kg P ha-1 (range = -32.7 to 340.6 kg P ha-1 ), with an average uncertainty of 13.1 kg P ha-1 (range = 1.0-87.1 kg P ha-1 ). Fertilizer/manure application and crop removal were the largest P fluxes across cropping systems and, as a result, accounted for the largest fraction of uncertainty in annual budgets (61% and 37%, respectively). Remaining fluxes individually accounted for <2% of the budget uncertainty. Uncertainties were large enough that determining whether P was increasing, decreasing, or not changing was inconclusive in 39% of the budgets evaluated. Findings indicate that more careful and/or direct measurements of inputs, outputs, and stocks are needed. Recommendations for minimizing uncertainty in P budgets based on the results of the study were developed. Quantifying, communicating, and constraining uncertainty in budgets among production systems and multiple geographies is critical for engaging stakeholders, developing local and national strategies for P reduction, and informing policy.


Assuntos
Fertilizantes , Fósforo , Esterco , Incerteza , Agricultura
13.
J Environ Qual ; 41(3): 621-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565243

RESUMO

Coastal and freshwater eutrophication continues to accelerate at sites around the world despite intense efforts to control agricultural P loss using traditional conservation and nutrient management strategies. To achieve required reductions in nonpoint P over the next decade, new tools will be needed to address P transfers from soils and applied P sources. Innovative remediation practices are being developed to remove nonpoint P sources from surface water and groundwater using P sorbing materials (PSMs) derived from natural, synthetic, and industrial sources. A wide array of technologies has been conceived, ranging from amendments that immobilize P in soils and manures to filters that remove P from agricultural drainage waters. This collection of papers summarizes theoretical modeling, laboratory, field, and economic assessments of P removal technologies. Modeling and laboratory studies demonstrate the importance of evaluating P removal technologies under controlled conditions before field deployment, and field studies highlight several challenges to P removal that may be unanticipated in the laboratory, including limited P retention by filters during storms, as well as clogging of filters due to sedimentation. Despite the potential of P removal technologies to improve water quality, gaps in our knowledge remain, and additional studies are needed to characterize the long-term performance of these technologies, as well as to more fully understand their costs and benefits in the context of whole-farm- and watershed-scale P management.


Assuntos
Água Subterrânea/química , Fósforo/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Agricultura , Sedimentos Geológicos , Recreação , Eliminação de Resíduos Líquidos
14.
J Environ Qual ; 41(3): 664-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565248

RESUMO

High levels of accumulated phosphorus (P) in soils of the Delmarva Peninsula are a major source of dissolved P entering drainage ditches that empty into the Chesapeake Bay. The objective of this study was to design, construct, and monitor a within-ditch filter to remove dissolved P, thereby protecting receiving waters against P losses from upstream areas. In April 2007, 110 Mg of flue gas desulfurization (FGD) gypsum, a low-cost coal combustion product, was used as the reactive ingredient in a ditch filter. The ditch filter was monitored from 2007 to 2010, during which time 29 storm-induced flow events were characterized. For storm-induced flow, the event mean concentration efficiency for total dissolved P (TDP) removal for water passing through the gypsum bed was 73 ± 27% confidence interval (α = 0.05). The removal efficiency for storm-induced flow by the summation of load method was 65 ± 27% confidence interval (α = 0.05). Although chemically effective, the maximum observed hydraulic conductivity of FGD gypsum was 4 L s(-1), but it decreased over time to <1 L s(-1). When bypass flow and base flow were taken into consideration, the ditch filter removed approximately 22% of the TDP load over the 3.6-yr monitoring period. Due to maintenance and clean-out requirements, we conclude that ditch filtration using FGD gypsum is not practical at a farm scale. However, we propose an alternate design consisting of FGD gypsum-filled trenches parallel to the ditch to intercept and treat groundwater before it enters the ditch.


Assuntos
Sulfato de Cálcio/química , Filtração/instrumentação , Fósforo/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Agricultura , Substâncias Perigosas/análise , Metais Pesados/química
15.
J Environ Qual ; 51(4): 602-613, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34379321

RESUMO

Agricultural communities of New Mexico regularly redistribute manure nutrients from dairies to nearby croplands to fulfill agronomic nutrient needs and protect water quality. Yet competition for water resources can result in land use change that affects these cooperative manure transfers. Focusing on three clusters of New Mexico dairy farms and their surrounding lands (three manuresheds), we calculated the magnitude of land use changes in 2008-2019 and the balance between manure nutrient supply and crop demand in 2019 to assess how past change may predict future prospects for sustainable management. The overall magnitude of change was small, with each manureshed experiencing a different complement: an exchange of cropland and rangeland in the Roosevelt manureshed (7,975 ha rangeland to cropland; 7,624 ha cropland to rangeland), a 464-ha gain in cropland but a 1,187-ha loss of "spreadable" land (cropland, rangeland, fallow) to developed land in the Doña Ana manureshed, and relatively minor changes in the Chaves manureshed. Nutrient supply and demand were mainly in balance, but a surplus of manure phosphorus (P) in the Chaves manureshed and a thin margin of P assimilation by croplands in the Roosevelt manureshed point to the need for preserving existing croplands and understanding of effects of dairy manure on shortgrass rangeland. Our assessment suggests that an ideal scenario would entail manure being generated in landscapes with portfolios of productive lands that can sustainably use the manure nutrients to minimize environmental quality concerns and agronomic tradeoffs. Coordinated, participatory, and interdisciplinary research and planning are needed.


Assuntos
Esterco , Fósforo , Agricultura , Fazendas , New Mexico , Fósforo/análise
16.
Water Sci Technol ; 64(4): 945-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22097083

RESUMO

The concept of critical source areas of phosphorus (P) loss produced by coinciding source and transport factors has been studied since the mid 1990s. It is widely recognized that identification of such areas has led to targeting of management strategies and conservation practices that more effectively mitigate P transfers from agricultural landscapes to surface waters. Such was the purpose of P Indices and more complex nonpoint source models. Despite their widespread adoption across the U.S., a lack of water quality improvement in certain areas (e.g. Chesapeake Bay Watershed and some of its tributaries) has challenged critical source area management to be more restrictive. While the role of soil and applied P has been easy to define and quantify, representation of transport processes still remains more elusive. Even so, the release of P from land management and in-stream buffering contribute to a legacy effect that can overwhelm the benefits of critical source area management, particularly as scale increases (e.g. the Chesapeake Bay). Also, conservation tillage that reduces erosion can lead to vertical stratification of soil P and ultimately increased dissolved P loss. Clearly, complexities imparted by spatially variable landscapes, climate, and system response will require iterative monitoring and adaptation, to develop locally relevant solutions. To overcome the challenges we have outlined, critical source area management must involve development of a 'toolbox' that contains several approaches to address the underlying problem of localized excesses of P and provide both spatial and temporal management options. To a large extent, this may be facilitated with the use of GIS and digital elevation models. Irrespective of the tool used, however, there must be a two-way dialogue between science and policy to limit the softening of technically rigorous and politically difficult approaches to truly reducing P losses.


Assuntos
Agricultura , Fósforo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Fósforo/análise , Poluentes Químicos da Água/análise
17.
J Environ Qual ; 39(3): 1028-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20400598

RESUMO

Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. In this study, we amended poultry, dairy, and swine manures with two rare earth chlorides, lanthanum chloride (LaCl(3).7H(2)O) and ytterbium chloride (YbCl(3).6H(2)O), to evaluate their effects on P solubility in the manure following incubation in the laboratory as well as on the fate of P and rare earth elements (REEs) when manures were surface-applied to packed soil boxes and subjected to simulated rainfall. In terms of manure P solubility, La:water-extractable P (WEP) ratios close to 1:1 resulted in maximum WEP reduction of 95% in dairy manure and 98% in dry poultry litter. Results from the runoff study showed that REE applications to dry manures such as poultry litter were less effective in reducing dissolved reactive phosphorus (DRP) in runoff than in liquid manures and slurries, which was likely due to mixing limitations. The most effective reductions of DRP in runoff by REEs were observed in the alkaline pH soil, although reductions of DRP in runoff from the acidic soil were still >50%. Particulate REEs were strongly associated with particulate P in runoff, suggesting a potentially useful role in tracking the fate of P and other manure constituents from manure-amended soils. Finally, REEs that remained in soil following runoff had a tendency to precipitate WEP, especially in soils receiving manure amendments. The findings have valuable applications in water quality protection and the evaluation of P site assessment indices.


Assuntos
Monitoramento Ambiental/métodos , Lantânio/química , Esterco/análise , Fósforo/química , Itérbio/química , Animais , Bovinos , Aves Domésticas , Solo/análise , Suínos , Movimentos da Água , Poluentes da Água
18.
J Agric Food Chem ; 68(8): 2297-2305, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31995372

RESUMO

We previously discovered a method to estimate the groundwater mean residence time using the changes in the enantiomeric ratio of metolachlor ethanesulfonic acid (MESA), (2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid), a metabolite of the herbicide metolachlor. However, many grab samples would be needed for each watershed over an extended period, and this is not practical. Thus, we examined the use of a polar organic chemical integrative sampler (POCIS) deployed for 28 days combined with a modified liquid chromatography-mass spectrometry LC-MS/MS method to provide a time-weighted average of the MESA enantiomeric ratio. POCISs equipped with hydrophilic-lipophilic-balanced (HLB) discs were deployed at five sites across the United States where metolachlor was used before and after 1999 and compared the effectiveness of the POCIS to capture MESA versus grab samples. In addition, an in situ POCIS sampling rate (Rs) for MESA was calculated (0.15 L/day), the precision of MESA extraction from stored POCIS discs was determined, and the effectiveness of HLB to extract MESA was examined. Finally, using molecular modeling, the influence of the asymmetric carbon of metolachlor degradation on the MESA enantiomeric ratio was predicted to be negligible. Results of this work will be used in projects to discern the groundwater mean residence times, to evaluate the delivery of nitrate-N from groundwater to surface waters under various soil, agronomic, and land use conditions, and to examine the effectiveness of conservation practices.


Assuntos
Acetamidas/química , Alcanossulfonatos/química , Monitoramento Ambiental/métodos , Água Subterrânea/química , Herbicidas/química , Compostos Orgânicos/química , Poluentes Químicos da Água/química , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo , Espectrometria de Massas em Tandem/métodos
19.
J Environ Qual ; 38(6): 2273-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19875784

RESUMO

Phosphorus (P) losses from agricultural landscapes arise from the interaction of hydrologic, edaphic, and management factors, complicated by their spatial and temporal variability. We monitored sites along two agricultural hillslopes to assess the effects of field management and hydrology on P transfers in surface runoff at different landscape positions. Surface runoff varied by landscape position, with saturation excess runoff accounting for 19 times the volume of infiltration excess runoff at the north footslope position, but infiltration excess runoff dominated at upslope landscape positions. Runoff differed significantly between south and north footslopes, coinciding with the extent of upslope soil underlain by a fragipan. Phosphorus in runoff was predominantly in dissolved reactive form (70%), with the highest concentrations associated with upper landscape positions closest to fields serving as major sources of P. However, the largest loads of P were from the north footslope, where runoff volumes were 24 times larger than from all other sites combined. Loads of P from the north footslope appeared to be primarily chronic transfers of desorbed soil P. Although runoff from the footslope likely contributed directly to stream flow and hence to stream water quality, 27% of runoff P from the upslope sites did not connect directly with stream flow. Findings of this study will be useful for evaluating the critical source area concept and metrics such as the P-Index.


Assuntos
Fósforo/análise , Movimentos da Água , Geografia , Mid-Atlantic Region , Chuva , Estações do Ano , Poluentes Químicos da Água/análise
20.
PLoS One ; 14(3): e0214665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921450

RESUMO

Cost-effective heat mitigation strategies are imperative for maintaining milk production and dairy farm profitability in the U.S. with projected climate change. This study investigated the cost-effectiveness of four heat abatement strategies, including Minimal (open barn or shading), Moderate (forced ventilation), High (fans and misting), and Intense (air conditioning). Heat stress and subsequent impacts on milk production per cow were predicted across nine climatic regions in the U.S. for early (2015 to 2034), mid (2045 to 2064) and late (2081 to 2100) 21st century, using downscaled climate projections. Heat abatements were used to adjust predicted milk production losses and illustrate the potential to reduce milk production losses due to heat stress. Economic analysis included a cost-benefit ratio calculation associated with the implementation of each heat abatement. Results showed that milk production losses were expected to accelerate across the U.S. at a mean rate of 174±7 kg/cow/decade, with the fastest rate in the Southeast region. Relative to Minimal heat abatement, Moderate, High, and Intense heat abatements increased annual milk production per cow by 3%, 4%, and 6% during early-21st century, 3%, 6%, and 11% during mid-21st century, and 3%, 8%, and 21% during late-21st century, respectively. The cost effectiveness of different heat abatement strategies generally increased with subsequently stronger heat abatements. In mid- and late-21st century, mean annual net values of High and Intense heat stress abatement implementation approached -$30 to $190 /cow and -$20 to $590 /cow, respectively, with the largest net annual benefit in late-21st century under Intense abatement. Findings from the study demonstrate the value of using downscaled climate projections to shed light on local and regional strategies to abate heat stress on cattle and mitigate potential milk production losses due to climate change.


Assuntos
Bovinos/metabolismo , Indústria de Laticínios/estatística & dados numéricos , Resposta ao Choque Térmico , Leite/metabolismo , Animais , Bovinos/fisiologia , Mudança Climática , Análise Custo-Benefício , Indústria de Laticínios/economia , Umidade , Temperatura , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA