Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
NMR Biomed ; 37(6): e5115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38355219

RESUMO

Arterial spin labeling (ASL) has been widely used to evaluate arterial blood and perfusion dynamics, particularly in the brain, but its application to the spinal cord has been limited. The purpose of this study was to optimize vessel-selective pseudocontinuous arterial spin labeling (pCASL) for angiographic and perfusion imaging of the rat cervical spinal cord. A pCASL preparation module was combined with a train of gradient echoes for dynamic angiography. The effects of the echo train flip angle, label duration, and a Cartesian or radial readout were compared to examine their effects on visualizing the segmental arteries and anterior spinal artery (ASA) that supply the spinal cord. Lastly, vessel-selective encoding with either vessel-encoded pCASL (VE-pCASL) or super-selective pCASL (SS-pCASL) were compared. Vascular territory maps were obtained with VE-pCASL perfusion imaging of the spinal cord, and the interanimal variability was evaluated. The results demonstrated that longer label durations (200 ms) resulted in greater signal-to-noise ratio in the vertebral arteries, improved the conspicuity of the ASA, and produced better quality maps of blood arrival times. Cartesian and radial readouts demonstrated similar image quality. Both VE-pCASL and SS-pCASL adequately labeled the right or left vertebral arteries, which revealed the interanimal variability in the segmental artery with variations in their location, number, and laterality. VE-pCASL also demonstrated unique interanimal variations in spinal cord perfusion with a right-sided dominance across the six animals. Vessel-selective pCASL successfully achieved visualization of the arterial inflow dynamics and corresponding perfusion territories of the spinal cord. These methodological developments provide unique insights into the interanimal variations in the arterial anatomy and dynamics of spinal cord perfusion.


Assuntos
Angiografia por Ressonância Magnética , Ratos Sprague-Dawley , Animais , Masculino , Angiografia por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Marcadores de Spin , Ratos , Medula Cervical/diagnóstico por imagem , Medula Cervical/irrigação sanguínea , Medula Espinal/irrigação sanguínea , Medula Espinal/diagnóstico por imagem
2.
Magn Reson Med ; 89(6): 2305-2317, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744728

RESUMO

PURPOSE: To evaluate pseudo-continuous arterial spin labeling (pCASL) and velocity-selective arterial spin labeling (VSASL) for quantification of spinal cord blood flow (SCBF) in the rat thoracolumbar spinal cord. METHODS: Labeling efficiency (LE) was compared between pCASL and three VSASL variants in simulations and both phantom and in vivo experiments at 9.4 T. For pCASL, the effects of label plane position and shimming were systematically evaluated. For VSASL, the effects of composite pulses and phase cycling were evaluated to reduce artifacts. Additionally, vessel suppression, respiratory, and cardiac gating were evaluated to reduce motion artifacts. pCASL and VSASL maps of spinal cord blood flow were acquired with the optimized protocols. RESULTS: LE of the descending aorta was larger in pCASL compared to VSASL variants. In pCASL, LE off-isocenter was improved by local shimming positioned at the label plane and the anatomical level of labeling for the thoracic cord was only viable at the level of the T10 vertebra. Cardiac gating was essential to reduce motion artifacts. Both pCASL and VSASL successfully demonstrated comparable SCBF values in the thoracolumbar cord. CONCLUSION: pCASL demonstrated high and consistent LE in the thoracic aorta, and VSASL was also feasible, but with reduced efficiency. A combination of cardiac gating and recording of actual post-label delays was important for accurate SCBF quantification. These results highlight the challenges and solutions to achieve sufficient ASL labeling and contrast at high field in organs prone to motion.


Assuntos
Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Ratos , Animais , Angiografia por Ressonância Magnética/métodos , Marcadores de Spin , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias , Circulação Cerebrovascular/fisiologia , Encéfalo/irrigação sanguínea
3.
J Neurosci Res ; 100(12): 2213-2231, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089917

RESUMO

Secondary damage obstructs functional recovery for individuals who have sustained a spinal cord injury (SCI). Two processes significantly contributing to tissue damage after trauma are spinal cord hemorrhage and inflammation: more specifically, the recruitment and activation of immune cells, frequently driven by pro-inflammatory factors. Cytokines are inflammatory mediators capable of modulating the immune response. While cytokines are necessary to elicit inflammation for proper healing, excessive inflammation can result in destructive processes. The pro-inflammatory cytokines IL-12 and IL-23 are pathogenic in multiple autoimmune diseases. The cytokine subunit IL-12p40 is necessary to form bioactive IL-12 and IL-23. In this study, we examined the relationship between spinal cord hemorrhage and IL-12-related factors, as well as the impact of IL-12p40 (IL-12/IL-23) on secondary damage and functional recovery after SCI. Using in vivo magnetic resonance imaging and protein tissue analyses, we demonstrated a positive correlation between IL-12 and tissue hemorrhage. Receptor and ligand subunits of IL-12 were significantly upregulated after injury and colocalized with astrocytes, demonstrating a myriad of opportunities for IL-12 to induce an inflammatory response. IL-12p40-/- mice demonstrated significantly improved functional recovery and reduced lesion sizes compared to wild-type mice. Targeted gene array analysis in wild-type and IL-12p40-/- female mice after SCI revealed an upregulation of genes associated with worsened recovery after SCI. Taken together, our data reveal a pathogenic role of IL-12p40 in the secondary damage after SCI, hindering functional recovery. IL-12p40 (IL-12/IL-23) is thus an enticing neuroinflammatory target for further study as a potential therapeutic target to benefit recovery in acute SCI.


Assuntos
Subunidade p40 da Interleucina-12 , Traumatismos da Medula Espinal , Camundongos , Feminino , Animais , Subunidade p40 da Interleucina-12/uso terapêutico , Ligantes , Traumatismos da Medula Espinal/patologia , Recuperação de Função Fisiológica/fisiologia , Inflamação/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação , Medula Espinal/patologia
4.
Addict Biol ; 27(2): e13134, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229952

RESUMO

Traumatic brain injury (TBI) and drug addiction are common comorbidities, but it is unknown if the neurological sequelae of TBI contribute to this relationship. We have previously reported elevated oxycodone seeking after drug self-administration in rats that received repeated blast TBI (rbTBI). TBI and exposure to drugs of abuse can each change structural and functional neuroimaging outcomes, but it is unknown if there are interactive effects of injury and drug exposure. To determine the effects of TBI and oxycodone exposure, we subjected rats to rbTBI and oxycodone self-administration and measured drug seeking and several neuroimaging measures. We found interactive effects of rbTBI and oxycodone on fractional anisotropy (FA) in the nucleus accumbens (NAc) and that FA in the medial prefrontal cortex (mPFC) was correlated with drug seeking. We also found an interactive effect of injury and drug on widespread functional connectivity and regional homogeneity of the blood oxygen level dependent (BOLD) response, and that intra-hemispheric functional connectivity in the infralimbic medial prefrontal cortex positively correlated with drug seeking. In conclusion, rbTBI and oxycodone self-administration had interactive effects on structural and functional magnetic resonance imaging (MRI) measures, and correlational effects were found between some of these measures and drug seeking. These data support the hypothesis that TBI and opioid exposure produce neuroadaptations that contribute to addiction liability.


Assuntos
Concussão Encefálica , Oxicodona , Animais , Comportamento de Procura de Droga , Neuroimagem , Oxicodona/farmacologia , Ratos , Autoadministração
5.
Magn Reson Med ; 86(2): 984-994, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33720450

RESUMO

PURPOSE: Diffusion MRI provides unique contrast important for the detection and examination of pathophysiology after acute neurologic insults, including spinal cord injury. Diffusion weighted imaging of the rodent spinal cord has typically been evaluated with axial EPI readout. However, Diffusion weighted imaging is prone to motion artifacts, whereas EPI is prone to susceptibility artifacts. In the context of acute spinal cord injury, diffusion filtering has previously been shown to improve detection of injury by minimizing the confounding effects of edema. We propose a diffusion-preparation module combined with a rapid acquisition with relaxation enhancement readout to minimize artifacts for sagittal imaging. METHODS: Sprague-Dawley rats with cervical contusion spinal cord injury were scanned at 9.4 Tesla. The sequence optimization included the evaluation of motion-compensated encoding diffusion gradients, gating strategy, and different spinal cord-specific diffusion-weighting schemes. RESULTS: A diffusion-prepared rapid acquisition with relaxation enhancement achieved high-quality images free from susceptibility artifacts with both second-order motion-compensated encoding and gating necessary for reduction of motion artifacts. Axial diffusivity obtained from the filtered diffusion-encoding scheme had greater lesion-to-healthy tissue contrast (52%) compared to the similar metric from DTI (25%). CONCLUSION: This work demonstrated the feasibility of high-quality diffusion sagittal imaging in the rodent cervical cord with diffusion-prepared relaxation enhancement. The sequence and results are expected to improve injury detection and evaluation in acute spinal cord injury.


Assuntos
Artefatos , Imagem de Difusão por Ressonância Magnética , Animais , Imagem Ecoplanar , Movimento (Física) , Ratos , Ratos Sprague-Dawley , Medula Espinal/diagnóstico por imagem
6.
NMR Biomed ; 33(11): e4355, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32812669

RESUMO

Diffusion tensor distribution (DTD) imaging builds on principles from diffusion, solid-state and low-field NMR spectroscopies, to quantify the contents of heterogeneous voxels as nonparametric distributions, with tensor "size", "shape" and orientation having direct relations to corresponding microstructural properties of biological tissues. The approach requires the acquisition of multiple images as a function of the magnitude, shape and direction of the diffusion-encoding gradients, leading to long acquisition times unless fast image read-out techniques like EPI are employed. While in previous in vivo human brain studies performed at 3 T this proved a viable option, porting these measurements to very high magnetic fields and/or to heterogeneous organs induces B0 - and B1 -inhomogeneity artifacts that challenge the limits of EPI. To overcome such challenges, we demonstrate here that high spatial resolution DTD of mouse brain can be carried out at 15.2 T with a surface-cryoprobe, by relying on SPatiotemporal ENcoding (SPEN) imaging sequences. These new acquisition and data-processing protocols are demonstrated with measurements on in vivo mouse brain, and validated with synthetic phantoms designed to mimic the diffusion properties of white matter, gray matter and cerebrospinal fluid. While still in need of full extensions to 3D mappings and of scanning additional animals to extract more general physiological conclusions, this work represents another step towards the model-free, noninvasive in vivo characterization of tissue microstructure and heterogeneity in animal models, at ≈0.1 mm resolutions.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Campos Magnéticos , Animais , Feminino , Processamento de Imagem Assistida por Computador , Camundongos Endogâmicos C57BL
7.
Eur Spine J ; 29(5): 1071-1077, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31832875

RESUMO

PURPOSE: Diffusion-weighted imaging has undergone substantial investigation as a potential tool for advanced assessment of spinal cord health. Unfortunately, commonly encountered surgically implanted spinal hardware has historically disrupted these studies. This preliminary investigation applies the recently developed multispectral diffusion-weighted PROPELLER technique to quantitative assessment of the spinal cord immediately adjacent to metallic spinal fusion instrumentation. METHODS: Morphological and diffusion-weighted MRI of the spinal cord was collected from 5 subjects with implanted cervical spinal fusion hardware. Conventional and multispectral diffusion-weighted images were also collected on a normative non-instrumented control cohort and utilized for methodological stability analysis. Variance of the ADC values derived from the normative control group was then analyzed on a subject-by-subject basis and qualitatively correlated with clinical morphological interpretations. RESULTS: Normative control ADC values within the spinal cord were stable across DWI methods for a b value of 600 s/mm2, though this stability degraded at lower b value levels. Susceptibility artifacts precluded conventional DWI analysis of the cord in subjects with spinal fusion hardware in 4 of the 5 test cases. On the contrary, multispectral PROPELLER DWI produced viable ADC measurements within the cord of all 5 instrumented subjects. Instrumented cord regions without obvious pathology (N = 4) showed ADC values that were lower than expected, whereas one subject with diagnosed myelomalacia showed abnormally elevated ADC. CONCLUSIONS: In the absence of instrumentation, multispectral DWI provides quantitative capabilities that match with those of conventional DWI approaches. In a preliminary instrumented subject analysis, cord ADC values showed both expected and unexpected variations from the normative cohort. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Medula Cervical , Doenças da Medula Espinal , Medula Cervical/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Pescoço , Medula Espinal/diagnóstico por imagem
8.
Eur J Neurosci ; 50(3): 2101-2112, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30456793

RESUMO

Each year, traumatic brain injuries (TBI) affect millions worldwide. Mild TBIs (mTBI) are the most prevalent and can lead to a range of neurobehavioral problems, including substance abuse. A single blast exposure, inducing mTBI alters the medial prefrontal cortex, an area implicated in addiction, for at least 30 days post injury in rats. Repeated blast exposures result in greater physiological and behavioral dysfunction than single exposure; however, the impact of repeated mTBI on addiction is unknown. In this study, the effect of mTBI on various stages of oxycodone use was examined. Male Sprague Dawley rats were exposed to a blast model of mTBI once per day for 3 days. Rats were trained to self-administer oxycodone during short (2 h) and long (6 h) access sessions. Following abstinence, rats underwent extinction and two cued reinstatement sessions. Sham and rbTBI rats had similar oxycodone intake, extinction responding and cued reinstatement of drug seeking. A second group of rats were trained to self-administer oxycodone with varying reinforcement schedules (fixed ratio (FR)-2 and FR-4). Under an FR-2 schedule, rbTBI-exposed rats earned fewer reinforcers than sham-exposed rats. During 10 extinction sessions, the rbTBI-exposed rats exhibited significantly more seeking for oxycodone than the sham-injured rats. There was a positive correlation between total oxycodone intake and day 1 extinction drug seeking in sham, but not in rbTBI-exposed rats. Together, this suggests that rbTBI-exposed rats are more sensitive to oxycodone-associated cues during reinstatement than sham-exposed rats and that rbTBI may disrupt the relationship between oxycodone intake and seeking.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Comportamento de Procura de Droga/fisiologia , Oxicodona/farmacologia , Autoadministração , Animais , Lesões Encefálicas Traumáticas/complicações , Cocaína/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Esquema de Reforço
9.
Ann Neurol ; 84(1): 37-50, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752739

RESUMO

OBJECTIVE: Diffusion-weighted imaging (DWI) is a powerful tool for investigating spinal cord injury (SCI), but has limited specificity for axonal damage, which is the most predictive feature of long-term functional outcome. In this study, a technique designed to detect acute axonal injury, filter-probe double diffusion encoding (FP-DDE), is compared with standard DWI for predicting long-term functional and cellular outcomes. METHODS: This study extends FP-DDE to predict long-term functional and histological outcomes in a rat SCI model of varying severities (n = 58). Using a 9.4T magnetic resonance imaging (MRI) system, a whole-cord FP-DDE spectroscopic voxel was acquired in 3 minutes at the lesion site and compared to DWI at 48 hours postinjury. Relationships with chronic (30-day) locomotor and histological outcomes were evaluated with linear regression. RESULTS: The FP-DDE measure of parallel diffusivity (ADC|| ) was significantly related to chronic hind limb locomotor functional outcome (R2 = 0.63, p < 0.0001), and combining this measurement with acute functional scores demonstrated prognostic benefit versus functional testing alone (p = 0.0007). Acute ADC|| measurements were also more closely related to the number of injured axons measured 30 days after the injury than standard DWI. Furthermore, acute FP-DDE images showed a clear and easily interpretable pattern of injury that closely corresponded with chronic MRI and histology observations. INTERPRETATION: Collectively, these results demonstrate FP-DDE benefits from greater specificity for acute axonal damage in predicting functional and histological outcomes with rapid acquisition and fully automated analysis, improving over standard DWI. FP-DDE is a promising technique compatible with clinical settings, with potential research and clinical applications for evaluation of spinal cord pathology. Ann Neurol 2018;83:37-50.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Avaliação de Resultados em Cuidados de Saúde/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Animais , Antígenos CD/metabolismo , Feminino , Locomoção/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Análise de Regressão , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo
10.
Magn Reson Med ; 77(4): 1639-1649, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27080726

RESUMO

PURPOSE: Diffusion-weighted imaging is a common experimental tool for evaluating spinal cord injury (SCI), yet it suffers from complications that decrease its clinical effectiveness. The most commonly used technique, diffusion tensor imaging (DTI), is often confounded by effects of edema accompanying acute SCI, limiting its sensitivity to the important functional status marker of axonal integrity. The purpose of this study is to introduce a novel diffusion-acquisition method with the goal of overcoming these limitations. METHODS: A double diffusion encoding (DDE) pulse sequence was implemented with a diffusion-weighted filter orthogonal to the spinal cord for suppressing nonneural signals prior to diffusion weighting parallel to the cord. A point-resolved spectroscopy readout (DDE-PRESS) was used for improved sensitivity and compared with DTI in a rat model of SCI with varying injury severities. RESULTS: The DDE-PRESS parameter, restricted fraction, showed a strong relationship with injury severity (P < 0.001, R2 = 0.67). Although the whole-cord averaged DTI parameter values exhibited only minor injury relationships, a weighted region of interest (ROI) based DTI analysis improved sensitivity to injury (P < 0.001, R2 = 0.66). CONCLUSIONS: In a rat model of SCI, DDE-PRESS demonstrated high sensitivity to injury with substantial decreases in acquisition time and data processing. This method shows promise for application in rapid evaluation of SCI severity. Magn Reson Med 77:1639-1649, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Índice de Gravidade de Doença , Processamento de Sinais Assistido por Computador , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Algoritmos , Animais , Feminino , Aumento da Imagem/métodos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
J Magn Reson Imaging ; 43(1): 63-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26094789

RESUMO

BACKGROUND: The purpose of this study was to determine whether DTI changes in the brain induced by a thoracic spinal cord injury are sensitive to varying severity of spinal contusion in rats. METHODS: A control, mild, moderate, or severe contusion injury was administered over the eighth thoracic vertebral level in 32 Sprague-Dawley rats. At 11 weeks postinjury, ex vivo DTI of the brain was performed on a 9.4T Bruker scanner using a pulsed gradient spin-echo sequence. RESULTS: Mean water diffusion in the internal capsule regions of the brain and pyramid locations of the brainstem were correlated with motor function (r(2) = 0.55). Additionally, there were significant differences between injury severity groups for mean diffusivity and fractional anisotropy at regions associated with the corticospinal tract (P = 0.05). CONCLUSION: These results indicate that DTI is sensitive to changes in brain tissue as a consequence of thoracic SCI.


Assuntos
Encefalopatias/etiologia , Encefalopatias/patologia , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/patologia , Animais , Feminino , Interpretação de Imagem Assistida por Computador/métodos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Índices de Gravidade do Trauma
12.
NMR Biomed ; 28(11): 1489-506, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26411743

RESUMO

Diffusion-weighted imaging (DWI) is a powerful tool to investigate the microscopic structure of the central nervous system (CNS). Diffusion tensor imaging (DTI), a common model of the DWI signal, has a demonstrated sensitivity to detect microscopic changes as a result of injury or disease. However, DTI and other similar models have inherent limitations that reduce their specificity for certain pathological features, particularly in tissues with complex fiber arrangements. Methods such as double pulsed field gradient (dPFG) and q-vector magic angle spinning (qMAS) have been proposed to specifically probe the underlying microscopic anisotropy without interference from the macroscopic tissue organization. This is particularly important for the study of acute injury, where abrupt changes in the microscopic morphology of axons and dendrites manifest as focal enlargements known as beading. The purpose of this work was to assess the relative sensitivity of DWI measures to beading in the context of macroscopic fiber organization and edema. Computational simulations of DWI experiments in normal and beaded axons demonstrated that, although DWI models can be highly specific for the simulated pathologies of beading and volume fraction changes in coherent fiber pathways, their sensitivity to a single idealized pathology is considerably reduced in crossing and dispersed fibers. However, dPFG and qMAS have a high sensitivity for beading, even in complex fiber tracts. Moreover, in tissues with coherent arrangements, such as the spinal cord or nerve fibers in which tract orientation is known a priori, a specific dPFG sequence variant decreases the effects of edema and improves specificity for beading. Collectively, the simulation results demonstrate that advanced DWI methods, particularly those which sample diffusion along multiple directions within a single acquisition, have improved sensitivity to acute axonal injury over conventional DTI metrics and hold promise for more informative clinical diagnostic use in CNS injury evaluation.


Assuntos
Lesão Axonal Difusa/patologia , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Neurológicos , Doença Aguda , Animais , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Modelos Estatísticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Am J Physiol Lung Cell Mol Physiol ; 306(10): L897-914, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24658139

RESUMO

In vivo imaging is an important tool for preclinical studies of lung function and disease. The widespread availability of multimodal animal imaging systems and the rapid rate of diagnostic contrast agent development have empowered researchers to noninvasively study lung function and pulmonary disorders. Investigators can identify, track, and quantify biological processes over time. In this review, we highlight the fundamental principles of bioluminescence, fluorescence, planar X-ray, X-ray computed tomography, magnetic resonance imaging, and nuclear imaging modalities (such as positron emission tomography and single photon emission computed tomography) that have been successfully employed for the study of lung function and pulmonary disorders in a preclinical setting. The major principles, benefits, and applications of each imaging modality and technology are reviewed. Limitations and the future prospective of multimodal imaging in pulmonary physiology are also discussed. In vivo imaging bridges molecular biological studies, drug design and discovery, and the imaging field with modern medical practice, and, as such, will continue to be a mainstay in biomedical research.


Assuntos
Pneumopatias/diagnóstico , Pulmão/patologia , Animais , Humanos , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Pneumopatias/patologia , Imageamento por Ressonância Magnética , Imagem Óptica , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
14.
J Neuroinflammation ; 11: 82, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24761998

RESUMO

BACKGROUND: After central nervous system injury, inflammatory macrophages (M1) predominate over anti-inflammatory macrophages (M2). The temporal profile of M1/M2 phenotypes in macrophages and microglia after traumatic brain injury (TBI) in rats is unknown. We subjected female rats to severe controlled cortical impact (CCI) and examined the postinjury M1/M2 time course in their brains. METHODS: The motor cortex (2.5 mm left laterally and 1.0 mm anteriorly from the bregma) of anesthetized female Wistar rats (ages 8 to 10 weeks; N = 72) underwent histologically moderate to severe CCI with a 5-mm impactor tip. Separate cohorts of rats had their brains dissociated into cells for flow cytometry, perfusion-fixed for immunohistochemistry (IHC) and ex vivo magnetic resonance imaging or flash-frozen for RNA and protein analysis. For each analytical method used, separate postinjury times were included for 24 hours; 3 or 5 days; or 1, 2, 4 or 8 weeks. RESULTS: By IHC, we found that the macrophagic and microglial responses peaked at 5 to 7 days post-TBI with characteristics of mixed populations of M1 and M2 phenotypes. Upon flow cytometry examination of immunological cells isolated from brain tissue, we observed that peak M2-associated staining occurred at 5 days post-TBI. Chemokine analysis by multiplex assay showed statistically significant increases in macrophage inflammatory protein 1α and keratinocyte chemoattractant/growth-related oncogene on the ipsilateral side within the first 24 hours after injury relative to controls and to the contralateral side. Quantitative RT-PCR analysis demonstrated expression of both M1- and M2-associated markers, which peaked at 5 days post-TBI. CONCLUSIONS: The responses of macrophagic and microglial cells to histologically severe CCI in the female rat are maximal between days 3 and 7 postinjury. The response to injury is a mixture of M1 and M2 phenotypes.


Assuntos
Lesões Encefálicas/patologia , Encéfalo/patologia , Macrófagos/patologia , Microglia/patologia , Análise de Variância , Animais , Encéfalo/metabolismo , Lesões Encefálicas/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/fisiologia , Imageamento por Ressonância Magnética , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Ratos , Ratos Wistar , Fatores de Tempo
15.
J Neurotrauma ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38251658

RESUMO

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a promising technique for assessing spinal cord injury (SCI) that has historically been challenged by the presence of metallic stabilization hardware. This study leverages recent advances in metal-artifact resistant multi-spectral DW-MRI to enable diffusion quantification throughout the spinal cord even after fusion stabilization. Twelve participants with cervical spinal cord injuries treated with fusion stabilization and 49 asymptomatic able-bodied control participants underwent multi-spectral DW-MRI evaluation. Apparent diffusion coefficient (ADC) values were calculated in axial cord sections. Statistical modeling assessed ADC differences across cohorts and within distinct cord regions of the SCI participants (at, above, or below injured level). Computed models accounted for subject demographics and injury characteristics. ADC was found to be elevated at injured levels compared with non-injured levels (z = 3.2, p = 0.001), with ADC at injured levels decreasing over time since injury (z = -9.2, p < 0.001). Below the injury level, ADC was reduced relative to controls (z = -4.4, p < 0.001), with greater reductions after more severe injuries that correlated with lower extremity motor scores (z = 2.56, p = 0.012). No statistically significant differences in ADC above the level of injury were identified. By enabling diffusion analysis near fusion hardware, the multi-spectral DW-MRI technique allowed intuitive quantification of cord diffusion changes after SCI both at and away from injured levels. This demonstrates the approach's potential for assessing post-surgical spinal cord integrity throughout stabilized regions.

16.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746371

RESUMO

Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.

17.
Neuroimage ; 83: 1081-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23921100

RESUMO

Fetal alcohol spectrum disorders (FASDs) comprise a wide range of neurological deficits that result from fetal exposure to ethanol (EtOH), and are the leading cause of environmentally related birth defects and mental retardation in the western world. One aspect of diagnostic and therapeutic intervention strategies that could substantially improve our ability to combat this significant problem would be to facilitate earlier detection of the disorders within individuals. Light microscopy-based investigations performed by several laboratories have previously shown that morphological development of neurons within the early-developing cerebral cortex is abnormal within the brains of animals exposed to EtOH during fetal development. We and others have recently demonstrated that diffusion MRI can be of utility for detecting abnormal cellular morphological development in the developing cerebral cortex. We therefore assessed whether diffusion tensor imaging (DTI) could be used to distinguish the developing cerebral cortices of ex vivo rat pup brains born from dams treated with EtOH (EtOH; 4.5 g/kg, 25%) or calorie-matched quantities of maltose/dextrin (M/D) throughout gestation. Water diffusion and tissue microstructure were investigated using DTI (fractional anisotropy, FA) and histology (anisotropy index, AI), respectively. Both FA and AI decreased with age, and were higher in the EtOH than the M/D group at postnatal ages (P)0, P3, and P6. Additionally, there was a significant correlation between FA and AI measurements. These findings provide evidence that disruptions in cerebral cortical development induced by EtOH exposure can be revealed by water diffusion anisotropy patterns, and that these disruptions are directly related to cerebral cortical differentiation.


Assuntos
Córtex Cerebral/patologia , Transtornos do Espectro Alcoólico Fetal/patologia , Animais , Anisotropia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Ratos , Ratos Long-Evans
18.
NMR Biomed ; 26(4): 468-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23225324

RESUMO

Serial MRI facilitates the in vivo analysis of the intra- and intersubject evolution of traumatic brain injury lesions. Despite the availability of MRI, the natural history of experimental focal contusion lesions in the controlled cortical impact (CCI) rat model has not been well described. We performed CCI on rats and MRI during the acute to chronic stages of cerebral injury to investigate the time course of changes in the brain. Female Wistar rats underwent CCI of their left motor cortex with a flat impact tip driven by an electromagnetic piston. In vivo MRI was performed at 7 T serially over 6 weeks post-CCI. The appearances of CCI-induced lesions and lesion-associated cortical volumes were variable on MRI, with the percentage change in cortical volume of the CCI ipsilateral side relative to the contralateral side ranging from 18% within 2 h of injury on day 0 to a peak of 35% on day 1, and a trough of -28% by week 5/6, with an average standard deviation of ± 14% at any given time point. In contrast, the percentage change in cortical volume of the ipsilateral side relative to the contralateral side in control rats was not significant (1 ± 2%). Hemorrhagic conversion within and surrounding the CCI lesion occurred between days 2 and 9 in 45% of rats, with no hemorrhage noted on the initial scan. Furthermore, hemorrhage and hemosiderin within the lesion were positive for Prussian blue and highly autofluorescent on histological examination. Although some variation in injuries may be technique related, the divergence of similar lesions between initial and final scans demonstrates the inherent biological variability of the CCI rat model.


Assuntos
Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Contusões/complicações , Contusões/patologia , Animais , Comportamento Animal , Córtex Cerebral/patologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Microscopia de Fluorescência , Tamanho do Órgão , Ratos Wistar
19.
Proc Natl Acad Sci U S A ; 107(32): 14472-7, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660718

RESUMO

Diffusion-weighted MRI (DWI) is a sensitive and reliable marker of cerebral ischemia. Within minutes of an ischemic event in the brain, the microscopic motion of water molecules measured with DWI, termed the apparent diffusion coefficient (ADC), decreases within the infarcted region. However, although the change is related to cell swelling, the precise pathological mechanism remains elusive. We show that focal enlargement and constriction, or beading, in axons and dendrites are sufficient to substantially decrease ADC. We first derived a biophysical model of neurite beading, and we show that the beaded morphology allows a larger volume to be encompassed within an equivalent surface area and is, therefore, a consequence of osmotic imbalance after ischemia. The DWI experiment simulated within the model revealed that intracellular ADC decreased by 79% in beaded neurites compared with the unbeaded form. To validate the model experimentally, excised rat sciatic nerves were subjected to stretching, which induced beading but did not cause a bulk shift of water into the axon (i.e., swelling). Beading-induced changes in cell-membrane morphology were sufficient to significantly hinder water mobility and thereby decrease ADC, and the experimental measurements were in excellent agreement with the simulated values. This is a demonstration that neurite beading accurately captures the diffusion changes measured in vivo. The results significantly advance the specificity of DWI in ischemia and other acute neurological injuries and will greatly aid the development of treatment strategies to monitor and repair damaged brain in both clinical and experimental settings.


Assuntos
Isquemia Encefálica/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Modelos Neurológicos , Neuritos/patologia , Acidente Vascular Cerebral/patologia , Animais , Isquemia Encefálica/diagnóstico , Membrana Celular , Forma Celular , Difusão , Osmose , Ratos , Nervo Isquiático , Acidente Vascular Cerebral/diagnóstico
20.
J Neurotrauma ; 40(9-10): 918-930, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36226406

RESUMO

Traumatic spinal cord injury causes rapid neuronal and vascular injury, and predictive biomarkers are needed to facilitate acute patient management. This study examined the progression of magnetic resonance imaging (MRI) biomarkers after spinal cord injury and their ability to predict long-term neurological outcomes in a rodent model, with an emphasis on diffusion-weighted imaging (DWI) markers of axonal injury and perfusion-weighted imaging of spinal cord blood flow (SCBF). Adult Sprague-Dawley rats received a cervical contusion injury of varying severity (injured = 30, sham = 9). MRI at 4 h, 48-h, and 12-weeks post-injury included T1, T2, perfusion, and DWI. Locomotor outcome was assessed up to 12 weeks post-injury. At 4 h, the deficit in SCBF was larger than the DWI lesion, and although SCBF partially recovered by 48 h, the DWI lesion expanded. At 4 h, the volume of the SCBF deficit (R2 = 0.56, padj < 0.01) was significantly correlated with 12-week locomotor outcome, whereas DWI (R2 = 0.30, padj < 0.01) was less predictive of outcome. At 48 h, SCBF (R2 = 0.41, padj < 0.01) became less associated with outcome, and DWI (R2 = 0.38, padj < 0.01) lesion volume became more closely related to outcome. Spinal cord perfusion has unique spatiotemporal dynamics compared with diffusion measures of axonal damage and highlights the importance of acute perfusion abnormalities. Perfusion and diffusion offer complementary and clinically relevant insight into physiological and structural abnormalities following spinal cord injury beyond those afforded by T1 or T2 contrasts.


Assuntos
Angiografia por Ressonância Magnética , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA