Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 75(Suppl 1): S110-S120, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749674

RESUMO

BACKGROUND: Comprehensive pathogen genomic surveillance represents a powerful tool to complement and advance precision vaccinology. The emergence of the Alpha variant in December 2020 and the resulting efforts to track the spread of this and other severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern led to an expansion of genomic sequencing activities in Germany. METHODS: At Robert Koch Institute (RKI), the German National Institute of Public Health, we established the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) network to perform SARS-CoV-2 genomic surveillance at the national scale, SARS-CoV-2-positive samples from laboratories distributed across Germany regularly undergo whole-genome sequencing at RKI. RESULTS: We report analyses of 3623 SARS-CoV-2 genomes collected between December 2020 and December 2021, of which 3282 were randomly sampled. All variants of concern were identified in the sequenced sample set, at ratios equivalent to those in the 100-fold larger German GISAID sequence dataset from the same time period. Phylogenetic analysis confirmed variant assignments. Multiple mutations of concern emerged during the observation period. To model vaccine effectiveness in vitro, we employed authentic-virus neutralization assays, confirming that both the Beta and Zeta variants are capable of immune evasion. The IMS-SC2 sequence dataset facilitated an estimate of the SARS-CoV-2 incidence based on genetic evolution rates. Together with modeled vaccine efficacies, Delta-specific incidence estimation indicated that the German vaccination campaign contributed substantially to a deceleration of the nascent German Delta wave. CONCLUSIONS: SARS-CoV-2 molecular and genomic surveillance may inform public health policies including vaccination strategies and enable a proactive approach to controlling coronavirus disease 2019 spread as the virus evolves.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Genoma Viral , Genômica , Humanos , Filogenia , SARS-CoV-2/genética , Vacinologia
2.
Allergy ; 77(7): 2080-2089, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34820854

RESUMO

BACKGROUND: The mRNA vaccine BNT162b2 (Comirnaty, BioNTech/Pfizer) and the vaccine candidate CVnCoV (Curevac) each encode a stabilized spike protein of SARS-CoV2 as antigen but differ with respect to the nature of the mRNA (modified versus unmodified nucleotides) and the mRNA amount (30 µg versus 12 µg RNA). This study characterizes antisera elicited by these two vaccines in comparison to convalescent sera. METHODS: Sera from BNT162b2 vaccinated healthcare workers, and sera from participants of a phase I trial vaccinated with 2, 4, 6, 8, or 12 µg CVnCoV and convalescent sera from hospitalized patients were analyzed by ELISA, neutralization tests, surface plasmon resonance (SPR), and peptide arrays. RESULTS: BNT162b2-elicited sera and convalescent sera have a higher titer of spike-RBD-specific antibodies and neutralizing antibodies as compared to the CVnCoV-elicited sera. For all analyzed sera a reduction in binding and neutralizing antibodies was found for the lineage B.1.351 variant of concern. SPR analyses revealed that the CVnCoV-elicited sera have a lower fraction of slow-dissociating antibodies. Accordingly, the CVnCoV sera almost fail to compete with the spike-ACE2 interaction. The significance of common VOC mutations K417N, E484K, or N501Y focused on linear epitopes was analyzed using a peptide array approach. The peptide arrays showed a strong difference between convalescent sera and vaccine-elicited sera. Specifically, the linear epitope at position N501 was affected by the mutation and elucidates the escape of viral variants to antibodies against this linear epitope. CONCLUSION: These data reveal differences in titer, neutralizing capacity, and affinity of the antibodies between BNT162b2- and CVnCoV-elicited sera, which could contribute to the apparent differences in vaccine efficacy.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/terapia , Ensaios Clínicos Fase I como Assunto , Epitopos , Humanos , Imunização Passiva , Peptídeos , RNA Mensageiro , RNA Viral , Vacinas Sintéticas , Vacinas de mRNA , Soroterapia para COVID-19
3.
Mol Cell Proteomics ; 16(5): 728-742, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28289176

RESUMO

Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target.


Assuntos
Proteínas de Transporte/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/virologia , Proteômica/métodos , Células A549 , Análise por Conglomerados , Endocitose , Células Epiteliais/patologia , Células HEK293 , Humanos , Marcação por Isótopo , Pulmão/patologia , Espectrometria de Massas , Proteínas Serina-Treonina Quinases , Proteoma/metabolismo , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases , Replicação Viral
4.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250123

RESUMO

The RNA-dependent protein kinase (PKR) has broad antiviral activity inducing translational shutdown of viral and cellular genes and is therefore targeted by various viral proteins to facilitate pathogen propagation. The pleiotropic NS1 protein of influenza A virus acts as silencer of PKR activation and ensures high-level viral replication and virulence. However, the exact manner of this inhibition remains controversial. To elucidate the structural requirements within the NS1 protein for PKR inhibition, we generated a set of mutant viruses, identifying highly conserved arginine residues 35 and 46 within the NS1 N terminus as being most critical not only for binding to and blocking activation of PKR but also for efficient virus propagation. Biochemical and Förster resonance energy transfer (FRET)-based interaction studies showed that mutation of R35 or R46 allowed formation of NS1 dimers but eliminated any detectable binding to PKR as well as to double-stranded RNA (dsRNA). Using in vitro and in vivo approaches to phenotypic restoration, we demonstrated the essential role of the NS1 N terminus for blocking PKR. The strong attenuation conferred by NS1 mutation R35A or R46A was substantially alleviated by stable knockdown of PKR in human cells. Intriguingly, both NS1 mutant viruses did not trigger any signs of disease in PKR+/+ mice, but replicated to high titers in lungs of PKR-/- mice and caused lethal infections. These data not only establish the NS1 N terminus as highly critical for neutralization of PKR's antiviral activity but also identify this blockade as an indispensable contribution of NS1 to the viral life cycle.IMPORTANCE Influenza A virus inhibits activation of the RNA-dependent protein kinase (PKR) by means of its nonstructural NS1 protein, but the underlying mode of inhibition is debated. Using mutational analysis, we identified arginine residues 35 and 46 within the N-terminal NS1 domain as highly critical for binding to and functional silencing of PKR. In addition, our data show that this is a main activity of amino acids 35 and 46, as the strong attenuation of corresponding mutant viruses in human cells was rescued to a large extent by lowering of PKR expression levels. Significantly, this corresponded with restoration of viral virulence for NS1 R35A and R46A mutant viruses in PKR-/- mice. Therefore, our data establish a model in which the NS1 N-terminal domain engages in a binding interaction to inhibit activation of PKR and ensure efficient viral propagation and virulence.


Assuntos
Aminoácidos/química , Vírus da Influenza A/química , Vírus da Influenza A/patogenicidade , Proteínas não Estruturais Virais/química , eIF-2 Quinase/antagonistas & inibidores , Animais , Linhagem Celular , Ativação Enzimática , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Vírus da Influenza A/genética , Pulmão/virologia , Camundongos , Mutação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Virulência , Replicação Viral , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
5.
Int J Mol Sci ; 19(7)2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949917

RESUMO

Virus infections induce sensitive antiviral responses within the host cell. The RNA helicase retinoic acid-inducible gene I (RIG-I) is a key sensor of influenza virus RNA that induces the expression of antiviral type I interferons. Recent evidence suggests a complex pattern of RIG-I regulation involving multiple interactions and cellular sites. In an approach employing affinity purification and quantitative mass spectrometry, we identified proteins with increased binding to RIG-I in response to influenza B virus infection. Among them was the RIG-I related RNA helicase DEAD box helicase 6 (DDX6), a known component of cytoplasmic mRNA-ribonucleoprotein (mRNP) granules like P-bodies and stress granules (SGs). RIG-I and DDX6 both localized to the cytosol and were detected in virus-induced SGs. Coimmunoprecipitation assays detected a basal level of complexes harboring RIG-I and DDX6 that increased after infection. Functionally, DDX6 augmented RIG-I mediated induction of interferon (IFN)-ß expression. Notably, DDX6 was found to bind viral RNA capable to stimulate RIG-I. These findings imply a novel function for DDX6 as an RNA co-sensor and signaling enhancer for RIG-I.


Assuntos
Antivirais/metabolismo , Proteína DEAD-box 58/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Células A549 , Grânulos Citoplasmáticos/metabolismo , Proteína DEAD-box 58/química , Regulação da Expressão Gênica , Células HeLa , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , RNA Viral/metabolismo , Receptores Imunológicos
6.
PLoS Pathog ; 9(8): e1003544, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950715

RESUMO

During viral infection, a massive demand for viral glycoproteins can overwhelm the capacity of the protein folding and quality control machinery, leading to an accumulation of unfolded proteins in the endoplasmic reticulum (ER). To restore ER homeostasis, cells initiate the unfolded protein response (UPR) by activating three ER-to-nucleus signaling pathways, of which the inositol-requiring enzyme 1 (IRE1)-dependent pathway is the most conserved. To reduce ER stress, the UPR decreases protein synthesis, increases degradation of unfolded proteins, and upregulates chaperone expression to enhance protein folding. Cytomegaloviruses, as other viral pathogens, modulate the UPR to their own advantage. However, the molecular mechanisms and the viral proteins responsible for UPR modulation remained to be identified. In this study, we investigated the modulation of IRE1 signaling by murine cytomegalovirus (MCMV) and found that IRE1-mediated mRNA splicing and expression of the X-box binding protein 1 (XBP1) is repressed in infected cells. By affinity purification, we identified the viral M50 protein as an IRE1-interacting protein. M50 expression in transfected or MCMV-infected cells induced a substantial downregulation of IRE1 protein levels. The N-terminal conserved region of M50 was found to be required for interaction with and downregulation of IRE1. Moreover, UL50, the human cytomegalovirus (HCMV) homolog of M50, affected IRE1 in the same way. Thus we concluded that IRE1 downregulation represents a previously undescribed viral strategy to curb the UPR.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/metabolismo , Endorribonucleases/biossíntese , Proteínas de Membrana/biossíntese , Muromegalovirus/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Resposta a Proteínas não Dobradas , Animais , Linhagem Celular Transformada , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Endorribonucleases/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Muromegalovirus/genética , Células NIH 3T3 , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Proteína 1 de Ligação a X-Box
7.
Cereb Cortex ; 24(1): 199-210, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23042740

RESUMO

Central nervous system (CNS) inflammation involves the generation of inducible cytokines such as interferons (IFNs) and alterations in brain activity, yet the interplay of both is not well understood. Here, we show that in vivo elevation of IFNs by viral brain infection reduced hyperpolarization-activated currents (Ih) in cortical pyramidal neurons. In rodent brain slices directly exposed to type I IFNs, the hyperpolarization-activated cyclic nucleotide (HCN)-gated channel subunit HCN1 was specifically affected. The effect required an intact type I receptor (IFNAR) signaling cascade. Consistent with Ih inhibition, IFNs hyperpolarized the resting membrane potential, shifted the resonance frequency, and increased the membrane impedance. In vivo application of IFN-ß to the rat and to the mouse cerebral cortex reduced the power of higher frequencies in the cortical electroencephalographic activity only in the presence of HCN1. In summary, these findings identify HCN1 channels as a novel neural target for type I IFNs providing the possibility to tune neural responses during the complex event of a CNS inflammation.


Assuntos
Córtex Cerebral/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Interferon Tipo I/fisiologia , Neurônios/fisiologia , Canais de Potássio/fisiologia , Animais , Western Blotting , Córtex Cerebral/citologia , Simulação por Computador , Citocinas/fisiologia , Eletroencefalografia , Fenômenos Eletrofisiológicos/fisiologia , Células HEK293 , Humanos , Imuno-Histoquímica , Interferon Tipo I/biossíntese , Interferon beta/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/metabolismo , Neocórtex/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interferon/fisiologia , Transdução de Sinais/fisiologia , Transfecção
8.
Nat Commun ; 15(1): 1064, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316757

RESUMO

The current model is that the influenza virus polymerase (FluPol) binds either to host RNA polymerase II (RNAP II) or to the acidic nuclear phosphoprotein 32 (ANP32), which drives its conformation and activity towards transcription or replication of the viral genome, respectively. Here, we provide evidence that the FluPol-RNAP II binding interface, beyond its well-acknowledged function in cap-snatching during transcription initiation, has also a pivotal role in replication of the viral genome. Using a combination of cell-based and in vitro approaches, we show that the RNAP II C-terminal-domain, jointly with ANP32, enhances FluPol replication activity. We observe successive conformational changes to switch from a transcriptase to a replicase conformation in the presence of the bound RNPAII C-terminal domain and propose a model in which the host RNAP II is the anchor for transcription and replication of the viral genome. Our data open new perspectives on the spatial coupling of viral transcription and replication and the coordinated balance between these two activities.


Assuntos
Orthomyxoviridae , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , RNA Viral/genética , Orthomyxoviridae/genética , RNA Polimerases Dirigidas por DNA , Replicação Viral/genética
9.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664395

RESUMO

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Assuntos
Quirópteros , Furões , Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Furões/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Quirópteros/virologia , Humanos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Camundongos , Filogenia , Influenza Humana/transmissão , Influenza Humana/virologia , Pulmão/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue
10.
J Exp Med ; 203(8): 1843-50, 2006 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16831899

RESUMO

Members of the alpha- and beta-subfamily of herpesviridae encode glycoproteins that specifically bind to the Fc part of immunoglobulin (Ig)G. Plasma membrane resident herpesviral Fc receptors seem to prevent virus-specific IgG from activating antibody-dependent effector functions. We show that the mouse cytomegalovirus (MCMV) molecule fcr-1 promotes a rapid down-regulation of NKG2D ligands murine UL16-binding protein like transcript (MULT)-1 and H60 from the cell surface. Deletion of the m138/fcr-1 gene from the MCMV genome attenuates viral replication to natural killer (NK) cell response in an NKG2D-dependent manner in vivo. A distinct N-terminal module within the fcr-1 ectodomain in conjunction with the fcr-1 transmembrane domain was required to dispose MULT-1 to degradation in lysosomes. In contrast, down-modulation of H60 required the complete fcr-1 ectodomain, implying independent modes of fcr-1 interaction with the NKG2D ligands. The results establish a novel viral strategy for down-modulating NK cell responses and highlight the impressive diversity of Fc receptor functions.


Assuntos
Proteínas de Transporte/metabolismo , Regulação para Baixo , Antígenos de Histocompatibilidade Classe I/metabolismo , Glicoproteínas de Membrana/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Muromegalovirus/metabolismo , Receptores Fc/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Virais/metabolismo , Animais , Proteínas de Transporte/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoglobulinas/imunologia , Ligantes , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Antígenos de Histocompatibilidade Menor/imunologia , Muromegalovirus/fisiologia , Células NIH 3T3 , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores Imunológicos/imunologia , Receptores de Células Matadoras Naturais , Replicação Viral/fisiologia
11.
J Virol ; 85(19): 10415-20, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21795351

RESUMO

Karposi's sarcoma-associated herpesvirus (KSHV) is found predominantly in a latent state in most cell types, impeding investigations of the lytic replication cycle. Here, we engineered the cloned KSHV genome, bacterial artificial chromosome 36 (BAC36), to enforce constitutive expression of the main lytic switch regulator, the replication and transcription activator (RTA) (open reading frame 50 [ORF50]). The resulting virus, KSHV-lyt, activated by default the lytic cycle and replicated to high titers in various cells. Using KSHV-lyt, we showed that ORF33 (encoding a tegument protein) is essential for lytic KSHV replication in cell culture, but ORF73 (encoding the latent nuclear antigen [LANA]) is not. Thus, KSHV-lyt should be highly useful to study viral gene function during lytic replication.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/genética , Latência Viral , Linhagem Celular , Cromossomos Artificiais Bacterianos , Genes Essenciais , Genes Virais , Engenharia Genética , Humanos , Proteínas Imediatamente Precoces/genética , Transativadores/genética , Carga Viral , Virulência
12.
Nat Commun ; 13(1): 2314, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538057

RESUMO

The 1918 influenza pandemic was the deadliest respiratory pandemic of the 20th century and determined the genomic make-up of subsequent human influenza A viruses (IAV). Here, we analyze both the first 1918 IAV genomes from Europe and the first from samples prior to the autumn peak. 1918 IAV genomic diversity is consistent with a combination of local transmission and long-distance dispersal events. Comparison of genomes before and during the pandemic peak shows variation at two sites in the nucleoprotein gene associated with resistance to host antiviral response, pointing at a possible adaptation of 1918 IAV to humans. Finally, local molecular clock modeling suggests a pure pandemic descent of seasonal H1N1 IAV as an alternative to the hypothesis of origination through an intrasubtype reassortment.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Genoma Viral/genética , Genômica , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Influenza Humana/epidemiologia , Influenza Humana/genética
13.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452356

RESUMO

Here, we report on the increasing frequency of the SARS-CoV-2 lineage A.27 in Germany during the first months of 2021. Genomic surveillance identified 710 A.27 genomes in Germany as of 2 May 2021, with a vast majority identified in laboratories from a single German state (Baden-Wuerttemberg, n = 572; 80.5%). Baden-Wuerttemberg is located near the border with France, from where most A.27 sequences were entered into public databases until May 2021. The first appearance of this lineage based on sequencing in a laboratory in Baden-Wuerttemberg can be dated to early January '21. From then on, the relative abundance of A.27 increased until the end of February but has since declined-meanwhile, the abundance of B.1.1.7 increased in the region. The A.27 lineage shows a mutational pattern typical of VOIs/VOCs, including an accumulation of amino acid substitutions in the Spike glycoprotein. Among those, L18F, L452R and N501Y are located in the epitope regions of the N-terminal- (NTD) or receptor binding domain (RBD) and have been suggested to result in immune escape and higher transmissibility. In addition, A.27 does not show the D614G mutation typical for all VOIs/VOCs from the B lineage. Overall, A.27 should continue to be monitored nationally and internationally, even though the observed trend in Germany was initially displaced by B.1.1.7 (Alpha), while now B.1.617.2 (Delta) is on the rise.


Assuntos
COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Substituição de Aminoácidos , COVID-19/epidemiologia , França/epidemiologia , Genoma Viral , Alemanha/epidemiologia , Humanos , Mutação , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
J Med Chem ; 64(17): 12774-12789, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34432457

RESUMO

The development of multivalent sialic acid-based inhibitors active against a variety of influenza A virus (IAV) strains has been hampered by high genetic and structural variability of the targeted viral hemagglutinin (HA). Here, we addressed this challenge by employing sialylated polyglycerols (PGs). Efficacy of prototypic PGs was restricted to a narrow spectrum of IAV strains. To understand this restriction, we selected IAV mutants resistant to a prototypic multivalent sialylated PG by serial passaging. Resistance mutations mapped to the receptor binding site of HA, which was accompanied by altered receptor binding profiles of mutant viruses as detected by glycan array analysis. Specifying the inhibitor functionalization to 2,6-α-sialyllactose (SL) and adjusting the linker yielded a rationally designed inhibitor covering an extended spectrum of inhibited IAV strains. These results highlight the importance of integrating virological data with chemical synthesis and structural data for the development of sialylated PGs toward broad anti-influenza compounds.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Glicerol/química , Glicerol/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Hemaglutininas/química , Hemaglutininas/metabolismo , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Estrutura Molecular , Mutação , Ligação Proteica , Relação Estrutura-Atividade
15.
J Virol ; 83(3): 1260-70, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19019949

RESUMO

Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2alpha, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2alpha phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2alpha kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (gamma34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.


Assuntos
Citomegalovirus/fisiologia , Proteínas Virais/fisiologia , eIF-2 Quinase/antagonistas & inibidores , Animais , Sequência de Bases , Western Blotting , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/genética , DNA Viral , Fator de Iniciação 2 em Eucariotos/metabolismo , Imunofluorescência , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fosforilação , RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo
16.
Nat Commun ; 10(1): 5518, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797923

RESUMO

Pandemic influenza A virus (IAV) outbreaks occur when strains from animal reservoirs acquire the ability to infect and spread among humans. The molecular basis of this species barrier is incompletely understood. Here we combine metabolic pulse labeling and quantitative proteomics to monitor protein synthesis upon infection of human cells with a human- and a bird-adapted IAV strain and observe striking differences in viral protein synthesis. Most importantly, the matrix protein M1 is inefficiently produced by the bird-adapted strain. We show that impaired production of M1 from bird-adapted strains is caused by increased splicing of the M segment RNA to alternative isoforms. Strain-specific M segment splicing is controlled by the 3' splice site and functionally important for permissive infection. In silico and biochemical evidence shows that avian-adapted M segments have evolved different conserved RNA structure features than human-adapted sequences. Thus, we identify M segment RNA splicing as a viral host range determinant.


Assuntos
Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Aves , Cães , Células HEK293 , Especificidade de Hospedeiro/genética , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/virologia , Splicing de RNA , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
17.
Biomaterials ; 138: 22-34, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28550754

RESUMO

Inhibition of influenza A virus infection by multivalent sialic acid inhibitors preventing viral hemagglutinin binding to host cells of the respiratory tract is a promising strategy. However, optimal geometry and optimal ligand presentation on multivalent scaffolds for efficient inhibition both in vitro and in vivo application are still unclear. Here, by comparing linear and dendritic polyglycerol sialosides (LPGSA and dPGSA) we identified architectural requirements and optimal ligand densities for an efficient multivalent inhibitor of influenza virus A/X31/1 (H3N2). Due to its large volume, the LPGSA at optimal ligand density sterically shielded the virus significantly better than the dendritic analog. A statistical mechanics model rationalizes the relevance of ligand density, morphology, and the size of multivalent scaffolds for the potential to inhibit virus-cell binding. Optimized LPGSA inhibited virus infection at IC50 in the low nanomolar nanoparticle concentration range and also showed potent antiviral activity against two avian influenza strains A/Mallard/439/2004 (H3N2) and A/turkey/Italy/472/1999 (H7N1) post infection. In vivo application of inhibitors clearly confirmed the higher inhibition potential of linear multivalent scaffolds to prevent infection. The optimized LPGSA did not show any acute toxicity, and was much more potent than the neuraminidase inhibitor oseltamivir carboxylate in vivo. Combined application of the LPGSA and oseltamivir carboxylate revealed a synergistic inhibitory effect and successfully prevented influenza virus infection in mice.


Assuntos
Antivirais/administração & dosagem , Antivirais/farmacologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H7N1/efeitos dos fármacos , Influenza Aviária/tratamento farmacológico , Influenza Humana/tratamento farmacológico , Análise de Variância , Animais , Antivirais/química , Linhagem Celular , Modelos Animais de Doenças , Cães , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Glicerol/química , Humanos , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Camundongos , Modelos Estatísticos , Nanopartículas/química , Oseltamivir/análogos & derivados , Oseltamivir/farmacologia , Polímeros/química , Aves Domésticas , Ácidos Siálicos
18.
Int Immunopharmacol ; 4(9): 1135-48, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15251110

RESUMO

Production of IgG in response to virus infection is central to antiviral immune effector functions and a hallmark of B cell memory. Antiviral antibodies (Abs) recognising viral glycoproteins or protein antigen displayed on the surface of virions or virus-infected cells are crucial in rendering the virus noninfectious and in eliminating viruses or infected cells, either acting alone or in conjunction with complement. In many instances, passive transfer of Abs is sufficient to protect from viral infection. Herpesviruses (HV) are equipped with a large array of immunomodulatory functions which increase the efficiency of infection by dampening the antiviral immunity. Members of the alpha- and beta-subfamily of the Herpesviridae are distinct in encoding transmembrane glycoproteins which selectively bind IgG via its Fc domain. The Fc-binding proteins constitute viral Fcgamma receptors (vFcgammaRs) which are expressed on the cell surface of infected cells. Moreover, vFcgammaRs are abundantly incorporated into the envelope of virions. Despite their molecular and structural heterogeneity, the vFcgammaRs generally interfere with IgG-mediated effector functions like antibody (Ab)-dependent cellular cytolysis, complement activation and neutralisation of infectivity of virions. vFcgammaRs may thus contribute to the limited therapeutic potency of antiherpesviral IgG in clinical settings. A detailed molecular understanding of vFcgammaRs opens up the possibility to design recombinant IgG molecules resisting vFcgammaRs. Engineering IgG with a better antiviral efficiency represents a new therapeutic option against herpesviral diseases.


Assuntos
Anticorpos Antivirais/imunologia , Herpesviridae/imunologia , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Animais , Humanos , Linfócitos T Reguladores/imunologia
19.
PLoS One ; 8(2): e56659, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451066

RESUMO

The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/ß) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/ß gene activation by different avian and human H5N1 isolates, if the IFN-α/ß response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/ß system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-ß, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/ß activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/ß induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/ß activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN-α/ß barrier involve mutations in multiple H5N1 genes.


Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Animais , Aves , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Replicação Viral/imunologia
20.
mBio ; 4(5): e00601-13, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24105764

RESUMO

UNLABELLED: A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-ß promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. IMPORTANCE: Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to propagate. Robust replication of the H7N9 strain correlated with a low induction of antiviral beta interferon (IFN-ß), and cell-based studies indicated that this is due to efficient suppression of the IFN response by the viral NS1 protein. Thus, explanted human lung tissue appears to be a useful experimental model to explore the determinants facilitating cross-species transmission of the H7N9 virus to humans.


Assuntos
Vírus da Influenza A/crescimento & desenvolvimento , Influenza Humana/virologia , Pulmão/virologia , Animais , Aves , Linhagem Celular , China , Humanos , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Influenza Humana/imunologia , Influenza Humana/patologia , Interferon beta/imunologia , Pulmão/imunologia , Pulmão/patologia , Dados de Sequência Molecular , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA