Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(19): 9318-9323, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30962368

RESUMO

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and Leishmania infantum, is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease. The compound series was discovered by repurposing hits from a screen against the related parasite Trypanosoma cruzi Subsequent optimization of the chemical series resulted in the development of a potent cidal compound with activity against a range of clinically relevant L. donovani and L. infantum isolates. Compound 8 demonstrates promising pharmacokinetic properties and impressive in vivo efficacy in our mouse model of infection comparable with those of the current oral antileishmanial miltefosine. Detailed mode of action studies confirm that this compound acts principally by inhibition of the chymotrypsin-like activity catalyzed by the ß5 subunit of the L. donovani proteasome. High-resolution cryo-EM structures of apo and compound 8-bound Leishmania tarentolae 20S proteasome reveal a previously undiscovered inhibitor site that lies between the ß4 and ß5 proteasome subunits. This induced pocket exploits ß4 residues that are divergent between humans and kinetoplastid parasites and is consistent with all of our experimental and mutagenesis data. As a result of these comprehensive studies and due to a favorable developability and safety profile, compound 8 is being advanced toward human clinical trials.


Assuntos
Antiprotozoários/administração & dosagem , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/diagnóstico por imagem , Inibidores de Proteassoma/administração & dosagem , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antiprotozoários/química , Sítios de Ligação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Leishmania donovani/química , Leishmania donovani/enzimologia , Leishmania infantum/química , Leishmania infantum/enzimologia , Leishmaniose Visceral/parasitologia , Masculino , Camundongos , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(14): 7015-7020, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894487

RESUMO

Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Malária Falciparum , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Animais , Criptosporidiose/tratamento farmacológico , Criptosporidiose/enzimologia , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Humanos , Lisina-tRNA Ligase/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/enzimologia , Camundongos SCID , Proteínas de Protozoários/metabolismo
3.
Nucleic Acids Res ; 47(16): 8675-8692, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31329932

RESUMO

The RNA guanine-N7 methyltransferase (RNMT) in complex with RNMT-activating miniprotein (RAM) catalyses the formation of a N7-methylated guanosine cap structure on the 5' end of nascent RNA polymerase II transcripts. The mRNA cap protects the primary transcript from exonucleases and recruits cap-binding complexes that mediate RNA processing, export and translation. By using microsecond standard and accelerated molecular dynamics simulations, we provide for the first time a detailed molecular mechanism of allosteric regulation of RNMT by RAM. We show that RAM selects the RNMT active site conformations that are optimal for binding of substrates (AdoMet and the cap), thus enhancing their affinity. Furthermore, our results strongly suggest the likely scenario in which the cap binding promotes the subsequent AdoMet binding, consistent with the previously suggested cooperative binding model. By employing the network community analyses, we revealed the underlying long-range allosteric networks and paths that are crucial for allosteric regulation by RAM. Our findings complement and explain previous experimental data on RNMT activity. Moreover, this study provides the most complete description of the cap and AdoMet binding poses and interactions within the enzyme's active site. This information is critical for the drug discovery efforts that consider RNMT as a promising anti-cancer target.


Assuntos
Metiltransferases/química , Capuzes de RNA/química , Proteínas de Ligação a RNA/química , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica , Transcrição Gênica
4.
J Biol Chem ; 293(23): 9064-9077, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29695506

RESUMO

The GTPase RhoA is a major player in many different regulatory pathways. RhoA catalyzes GTP hydrolysis, and its catalysis is accelerated when RhoA forms heterodimers with proteins of the guanine nucleotide exchange factor (GEF) family. Neuroepithelial cell transforming gene 1 (Net1) is a RhoA-interacting GEF implicated in cancer, but the structural features supporting the RhoA/Net1 interaction are unknown. Taking advantage of a simple production and purification process, here we solved the structure of a RhoA/Net1 heterodimer with X-ray crystallography at 2-Å resolution. Using a panel of several techniques, including molecular dynamics simulations, we characterized the RhoA/Net1 interface. Moreover, deploying an extremely simple peptide-based scanning approach, we found that short peptides (penta- to nonapeptides) derived from the protein/protein interaction region of RhoA could disrupt the RhoA/Net1 interaction and thereby diminish the rate of nucleotide exchange. The most inhibitory peptide, EVKHF, spanning residues 102-106 in the RhoA sequence, displayed an IC50 of ∼100 µm without further modifications. The peptides identified here could be useful in further investigations of the RhoA/Net1 interaction region. We propose that our structural and functional insights might inform chemical approaches for transforming the pentapeptide into an optimized pseudopeptide that antagonizes Net1-mediated RhoA activation with therapeutic anticancer potential.


Assuntos
Proteínas Oncogênicas/química , Proteína rhoA de Ligação ao GTP/química , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacologia , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Proteínas Oncogênicas/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Alinhamento de Sequência , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Nucleic Acids Res ; 44(21): 10423-10436, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422871

RESUMO

Maturation and translation of mRNA in eukaryotes requires the addition of the 7-methylguanosine cap. In vertebrates, the cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), has an activating subunit, RNMT-Activating Miniprotein (RAM). Here we report the first crystal structure of the human RNMT in complex with the activation domain of RAM. A relatively unstructured and negatively charged RAM binds to a positively charged surface groove on RNMT, distal to the active site. This results in stabilisation of a RNMT lobe structure which co-evolved with RAM and is required for RAM binding. Structure-guided mutagenesis and molecular dynamics simulations reveal that RAM stabilises the structure and positioning of the RNMT lobe and the adjacent α-helix hinge, resulting in optimal positioning of helix A which contacts substrates in the active site. Using biophysical and biochemical approaches, we observe that RAM increases the recruitment of the methyl donor, AdoMet (S-adenosyl methionine), to RNMT. Thus we report the mechanism by which RAM allosterically activates RNMT, allowing it to function as a molecular rheostat for mRNA cap methylation.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Ativação Enzimática , Humanos , Espectroscopia de Ressonância Magnética , Metiltransferases/genética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas de Ligação a RNA/genética , Relação Estrutura-Atividade
6.
Biochemistry ; 55(17): 2500-9, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27050388

RESUMO

MDM2 is an important oncoprotein that downregulates the activity of the tumor suppressor protein p53 via binding of its N-terminal domain to the p53 transactivation domain. The first 24 residues of the MDM2 N-terminal domain form an intrinsically disordered "lid" region that interconverts on a millisecond time scale between "open" and "closed" states in unliganded MDM2. While the former conformational state is expected to facilitate p53 binding, the latter competes in a pseudo-substrate manner with p53 for its binding site. Phosphorylation of serine 17 in the MDM2 lid region is thought to modulate the equilibrium between "open" and "closed" lid states, but contradictory findings on the favored lid conformational state upon phosphorylation have been reported. Here, the nature of the conformational states of MDM2 pSer17 and Ser17Asp variants was addressed by means of enhanced sampling molecular dynamics simulations. Detailed analyses of the computed lid conformational ensembles indicate that both lid variants stabilize a "closed" state, with respect to wild type. Nevertheless, the nature of the closed-state conformational ensembles differs significantly between the pSer17 and Ser17Asp variants. Thus, care should be applied in the interpretation of biochemical experiments that use phosphomimetic variants to model the effects of phosphorylation on the structure and dynamics of this disordered protein region.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/química , Serina/química , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Mutação/genética , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina/genética , Serina/metabolismo
7.
Biochemistry ; 55(41): 5854-5864, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27682658

RESUMO

A 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) electrophilic moiety is post-translationally and autocatalytically generated in homotetrameric histidine ammonia-lyase (HAL) and other enzymes containing the tripeptide Ala-Ser-Gly in a suitably positioned loop. The backbone cyclization step is identical to that taking place during fluorophore formation in green fluorescent protein from the tripeptide Ser-Tyr-Gly, but dehydration, rather than dehydrogenation by molecular oxygen, is the reaction that gives rise to the mature MIO ring system. To gain additional insight into this unique process and shed light on some still unresolved issues, we have made use of extensive molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations implementing the self-consistent charge density functional tight-binding method on a fully solvated tetramer of Pseudomonas putida HAL. Our results strongly support the idea that mechanical compression of the reacting loop by neighboring protein residues in the precursor state is absolutely required to prevent formation of inhibitory main-chain hydrogen bonds and to enforce proper alignment of donor and acceptor orbitals for bond creation. The consideration of the protein environment in our computations shows that water molecules, which have been mostly neglected in previous theoretical work, play a highly relevant role in the reaction mechanism and, more importantly, that backbone cyclization resulting from the nucleophilic attack of the Gly amide lone pair on the π* orbital of the Ala carbonyl precedes side-chain dehydration of the central serine.


Assuntos
Histidina Amônia-Liase/metabolismo , Imidazóis/metabolismo , Cristalografia por Raios X , Histidina Amônia-Liase/química , Simulação de Dinâmica Molecular , Teoria Quântica
8.
PLoS Comput Biol ; 11(6): e1004282, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26046940

RESUMO

Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29) peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
9.
Structure ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38870939

RESUMO

Cyclin dependent kinase 7 (CDK7) is an important therapeutic kinase best known for its dual role in cell cycle regulation and gene transcription. Here, we describe the application of protein engineering to generate constructs leading to high resolution crystal structures of human CDK7 in both active and inactive conformations. The active state of the kinase was crystallized by incorporation of an additional surface residue mutation (W132R) onto the double phosphomimetic mutant background (S164D and T170E) that yielded the inactive kinase structure. A novel back-soaking approach was developed to determine crystal structures of several clinical and pre-clinical inhibitors of this kinase, demonstrating the potential utility of the crystal system for structure-based drug design (SBDD). The crystal structures help to rationalize the mode of inhibition and the ligand selectivity profiles versus key anti-targets. The protein engineering approach described here illustrates a generally applicable strategy for structural enablement of challenging molecular targets.

10.
Nucleic Acids Res ; 39(18): 8248-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21727089

RESUMO

The difference in melting temperature of a double-stranded (ds) DNA molecule in the absence and presence of bound ligands can provide experimental information about the stabilization brought about by ligand binding. By simulating the dynamic behaviour of a duplex of sequence 5'-d(TAATAACGGATTATT)·5'-d(AATAATCCGTTATTA) in 0.1 M NaCl aqueous solution at 400 K, we have characterized in atomic detail its complete thermal denaturation profile in <200 ns. A striking asymmetry was observed on both sides of the central CGG triplet and the strand separation process was shown to be strongly affected by bonding in the minor groove of the prototypical interstrand crosslinker mitomycin C or the monofunctional tetrahydroisoquinolines trabectedin (Yondelis), Zalypsis and PM01183. Progressive helix unzipping was clearly interspersed with some reannealing events, which were most noticeable in the oligonucleotides containing the monoadducts, which maintained an average of 6 bp in the central region at the end of the simulations. These significant differences attest to the demonstrated ability of these drugs to stabilize dsDNA, stall replication and transcription forks, and recruit DNA repair proteins. This stabilization, quantified here in terms of undisrupted base pairs, supports the view that these monoadducts can functionally mimic a DNA interstrand crosslink.


Assuntos
Antineoplásicos/química , DNA/química , Temperatura , Pareamento de Bases , Reagentes de Ligações Cruzadas/química , Dioxóis/química , Interações Hidrofóbicas e Hidrofílicas , Mitomicina/química , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico , Tetra-Hidroisoquinolinas/química , Trabectedina
11.
Org Biomol Chem ; 10(8): 1543-52, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22222915

RESUMO

Mitomycin C (MMC) is a potent antitumour agent that forms a covalent bond with the 2-amino group of selected guanines in the minor groove of double-stranded DNA following intracellular reduction of its quinone ring and opening of its aziridine moiety. At some 5'-CG-3' (CpG) steps the resulting monofunctional adduct can evolve towards a more deleterious bifunctional lesion, which is known as an interstrand crosslink (ICL). MMC reactivity is enhanced when the cytosine bases are methylated (5 MC) and decreased when they are replaced with 5-F-cytosine (5FC) whereas the stereochemical preference of alkylation changes upon decarbamoylation. We have studied three duplex oligonucleotides of general formula d(CGATAAXGCTAACG) in which X stands for C, 5MC or 5FC. Using a combination of molecular dynamics simulations in aqueous solution, quantum mechanics and continuum electrostatics, we have been able to (i) obtain a large series of snapshots that facilitate an understanding in atomic detail of the distinct stereochemistry of monoadduct and ICL formation by MMC and its decarbamoylated analogue, (ii) provide an explanation for the altered reactivity of MMC towards DNA molecules containing 5MC or 5FC, and (iii) show the distinct accommodation in the DNA minor groove of the different covalent modifications, particularly the most cytotoxic C1α and C1ß ICLs.


Assuntos
Ilhas de CpG , Citosina/química , DNA/química , Mitomicina/química , Modelos Moleculares , Estereoisomerismo
12.
Chembiochem ; 12(17): 2615-22, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22114054

RESUMO

Using information from wild-type and mutant Vibrio vulnificus nuclease (Vvn) and I-PpoI homing endonuclease co-crystallized with different oligodeoxynucleotides, we have built the complex of Vvn with a DNA octamer and carried out a series of simulations to dissect the catalytic mechanism of this metallonuclease in a stepwise fashion. The distinct roles played in the reaction by individual active site residues, the metal cation and water molecules have been clarified by using a combination of classical molecular dynamics simulations and quantum mechanical calculations. Our results strongly support the most parsimonious catalytic mechanism, namely one in which a single water molecule from bulk solvent is used to cleave the phosphodiester bond and protonate the 3'-hydroxylate leaving group.


Assuntos
Endonucleases/metabolismo , Simulação de Dinâmica Molecular , Vibrio vulnificus/enzimologia , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Endonucleases/química , Íons/química , Metais/química , Oligodesoxirribonucleotídeos/química , Periplasma/enzimologia , Teoria Quântica
13.
ACS Infect Dis ; 6(3): 515-528, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31967783

RESUMO

Available treatments for Chagas' disease and visceral leishmaniasis are inadequate, and there is a pressing need for new therapeutics. Drug discovery efforts for both diseases principally rely upon phenotypic screening. However, the optimization of phenotypically active compounds is hindered by a lack of information regarding their molecular target(s). To combat this issue we initiate target deconvolution studies at an early stage. Here, we describe comprehensive genetic and biochemical studies to determine the targets of three unrelated phenotypically active compounds. All three structurally diverse compounds target the Qi active-site of cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Our studies go on to identify the Qi site as a promiscuous drug target in Leishmania donovani and Trypanosoma cruzi with a propensity to rapidly mutate. Strategies to rapidly identify compounds acting via this mechanism are discussed to ensure that drug discovery portfolios are not overwhelmed with inhibitors of a single target.


Assuntos
Antiparasitários/farmacologia , Citocromos b/antagonistas & inibidores , Descoberta de Drogas , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Antiparasitários/química , Antiparasitários/isolamento & purificação , Doença de Chagas/tratamento farmacológico , Citocromos b/genética , Ensaios de Triagem em Larga Escala , Humanos , Leishmaniose Visceral/tratamento farmacológico
14.
J Phys Chem B ; 118(22): 5807-16, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24814976

RESUMO

Chagas' disease, also known as American trypanosomiasis, is a lethal, chronic disease that currently affects more than 10 million people in Central and South America. The trans-sialidase from Trypanosoma cruzi (T. cruzi, TcTS) is a crucial enzyme for the survival of this parasite: sialic acids from the host are transferred to the cell surface glycoproteins of the trypanosome, thereby evading the host's immune system. On the other hand, the sialidase of T. rangeli (TrSA), which shares 70% sequence identity with TcTS, is a strict hydrolase and shows no trans-sialidase activity. Therefore, TcTS and TrSA represent an excellent framework to understand how different catalytic activities can be achieved with extremely similar structures. By means of combined quantum mechanics-molecular mechanics (QM/MM, SCC-DFTB/Amberff99SB) calculations and umbrella sampling simulations, we investigated the hydrolysis mechanisms of TcTS and TrSA and computed the free energy profiles of these reactions. The results, together with our previous computational investigations, are able to explain the catalytic mechanism of sialidases and describe how subtle differences in the active site make TrSA a strict hydrolase and TcTS a more efficient trans-sialidase.


Assuntos
Glicoproteínas/metabolismo , Neuraminidase/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma rangeli/enzimologia , Tripanossomíase/parasitologia , Domínio Catalítico , Glicoproteínas/química , Humanos , Hidrólise , Lactose/análogos & derivados , Lactose/química , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/química , Teoria Quântica , Termodinâmica , Trypanosoma cruzi/química , Trypanosoma cruzi/metabolismo , Trypanosoma rangeli/química , Trypanosoma rangeli/metabolismo , Tripanossomíase/enzimologia
15.
Chem Biol ; 18(8): 988-99, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21867914

RESUMO

Trabectedin and Zalypsis are two potent anticancer tetrahydroisoquinoline alkaloids that can form a covalent bond with the amino group of a guanine in selected triplets of DNA duplexes and eventually give rise to double-strand breaks. Using well-defined in vitro and in vivo assays, we show that the resulting DNA adducts stimulate, in a concentration-dependent manner, cleavage by the XPF/ERCC1 nuclease on the strand opposite to that bonded by the drug. They also inhibit RNA synthesis by: (1) preventing binding of transcription factors like Sp1 to DNA, and (2) arresting elongating RNA polymerase II at the same nucleotide position regardless of the strand they are located on. Structural models provide a rationale for these findings and highlight the similarity between this type of DNA modification and an interstrand crosslink.


Assuntos
Antineoplásicos/farmacologia , Quebras de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Dioxóis/farmacologia , RNA Polimerase II/metabolismo , Tetra-Hidroisoquinolinas/farmacologia , Antineoplásicos Alquilantes/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Endonucleases/metabolismo , Humanos , Modelos Moleculares , RNA Polimerase II/genética , Fator de Transcrição Sp1/metabolismo , Trabectedina , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA