Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 15 Suppl 7: S7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25573782

RESUMO

BACKGROUND: DNA damage (single or double-strand breaks) triggers adapted cellular responses. These responses are elicited through signalling pathways, which activate cell cycle checkpoints and basically lead to three cellular fates: cycle arrest promoting DNA repair, senescence (permanent arrest) or cell death. Cellular senescence is known for having a tumour-suppressive function and its regulation arouses a growing scientific interest. Here, we advance a qualitative model covering DNA damage response pathways, focusing on G1/S checkpoint enforcement, supposedly more sensitive to arrest than G2/M checkpoint. RESULTS: We define a discrete, logical model encompassing ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) pathways activation upon DNA damage, as well as G1/S checkpoint main components. It also includes the stress responsive protein p38MAPK (mitogen-activated protein kinase 14) known to be involved in the regulation of senescence. The model has four outcomes that convey alternative cell fates: proliferation, (transient) cell cycle arrest, apoptosis and senescence. Different levels of DNA damage are considered, defined by distinct combinations of single and double-strand breaks. Each leads to a single stable state denoting the cell fate adopted upon this specific damage. A range of model perturbations corresponding to gene loss-of-function or gain-of-function is compared to experimental mutations. CONCLUSIONS: As a step towards an integrative model of DNA-damage response pathways to better cover the onset of senescence, our model focuses on G1/S checkpoint enforcement. This model qualitatively agrees with most experimental observations, including experiments involving mutations. Furthermore, it provides some predictions.


Assuntos
Senescência Celular , Dano ao DNA , Pontos de Checagem da Fase G1 do Ciclo Celular , Modelos Biológicos , Pontos de Checagem da Fase S do Ciclo Celular , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Senescência Celular/genética , Reparo do DNA/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Mutação , Pontos de Checagem da Fase S do Ciclo Celular/genética , Transdução de Sinais
2.
BMC Genomics ; 12 Suppl 4: S10, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22369581

RESUMO

BACKGROUND: We introduce a method to analyze the states of regulatory Boolean models that identifies important network states and their biological influence on the global network dynamics. It consists in (1) finding the states of the network that are most frequently visited and (2) the identification of variable and frozen nodes of the network. The method, along with a simulation that includes random features, is applied to the study of stomata closure by abscisic acid (ABA) in A. thaliana proposed by Albert and coworkers. RESULTS: We find that for the case of study, that the dynamics of wild and mutant networks have just two states that are highly visited in their space of states and about a third of all nodes of the wild network are variable while the rest remain frozen in True or False states. This high number of frozen elements explains the low cardinality of the space of states of the wild network. Similar results are observed in the mutant networks. The application of the method allowed us to explain how wild and mutants behave dynamically in the SS and determined an essential feature of the activation of the closure node (representing stomata closure), i.e. its synchronization with the AnionEm node (representing anion efflux at the plasma membrane). The dynamics of this synchronization explains the efficiency reached by the wild and each of the mutant networks. CONCLUSIONS: For the biological problem analyzed, our method allows determining how wild and mutant networks differ 'phenotypically'. It shows that the different efficiencies of stomata closure reached among the simulated wild and mutant networks follow from a dynamical behavior of two nodes that are always synchronized. Additionally, we predict that the involvement of the anion efflux at the plasma membrane is crucial for the plant response to ABA. AVAILABILITY: The algorithm used in the simulations is available upon request.


Assuntos
Ácido Abscísico/metabolismo , Algoritmos , Arabidopsis/metabolismo , Arabidopsis/genética , Redes Reguladoras de Genes , Modelos Teóricos , Mutação
3.
PLoS One ; 10(5): e0125217, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954815

RESUMO

Experimental evidence indicates that aging leads to accumulation of senescent cells in tissues and they develop a secretory phenotype (also known as SASP, for senescence-associated secretory phenotype) that can contribute to chronic inflammation and diseases. Recent results have showed that markers of senescence in astrocytes from aged brains are increased in brains with Alzheimer's disease. These studies strongly involved the stress kinase p38MAPK in the regulation of the secretory phenotype of astrocytes, yet the molecular mechanisms underlying the onset of senescence and SASP activation remain unclear. In this work, we propose a discrete logical model for astrocyte senescence determined by the level of DNA damage (reparable or irreparable DNA strand breaks) where the kinase p38MAPK plays a central role in the regulation of senescence and SASP. The model produces four alternative stable states: proliferation, transient cycle arrest, apoptosis and senescence (and SASP) computed from its inputs representing DNA damages. Perturbations of the model were performed through gene gain or loss of functions and compared with results concerning cultures of normal and mutant astrocytes showing agreement in most cases. Moreover, the model allows some predictions that remain to be tested experimentally.


Assuntos
Astrócitos/citologia , Astrócitos/enzimologia , Senescência Celular , Modelos Biológicos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/genética , Linhagem da Célula/genética , Simulação por Computador , Redes Reguladoras de Genes , Humanos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA