Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 1, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600217

RESUMO

BACKGROUND: Prolonged cellular activity may overload cell function, leading to high rates of protein synthesis and accumulation of misfolded or unassembled proteins, which cause endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) to re-establish normal protein homeostasis. Previous molecular work has demonstrated that sleep deprivation (SD) leads to ER stress in neurons, with a number of ER-specific proteins being upregulated to maintain optimal cellular proteostasis. It is still not clear which cellular processes activated by sleep deprivation lead to ER- stress, but increased cellular metabolism, higher request for protein synthesis, and over production of oxygen radicals have been proposed as potential contributing factors. Here, we investigate the transcriptional and ultrastructural ER and mitochondrial modifications induced by sleep loss. RESULTS: We used gene expression analysis in mouse forebrains to show that SD was associated with significant transcriptional modifications of genes involved in ER stress but also in ER-mitochondria interaction, calcium homeostasis, and mitochondrial respiratory activity. Using electron microscopy, we also showed that SD was associated with a general increase in the density of ER cisternae in pyramidal neurons of the motor cortex. Moreover, ER cisternae established new contact sites with mitochondria, the so-called mitochondria associated membranes (MAMs), important hubs for molecule shuttling, such as calcium and lipids, and for the modulation of ATP production and redox state. Finally, we demonstrated that Drosophila male mutant flies (elav > linker), in which the number of MAMs had been genetically increased, showed a reduction in the amount and consolidation of sleep without alterations in the homeostatic sleep response to SD. CONCLUSIONS: We provide evidence that sleep loss induces ER stress characterized by increased crosstalk between ER and mitochondria. MAMs formation associated with SD could represent a key phenomenon for the modulation of multiple cellular processes that ensure appropriate responses to increased cell metabolism. In addition, MAMs establishment may play a role in the regulation of sleep under baseline conditions.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Privação do Sono , Animais , Masculino , Camundongos , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Privação do Sono/metabolismo , Drosophila
2.
Neurobiol Dis ; 170: 105752, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569721

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease placing a great burden on people living with it, carers and society. Yet, the underlying patho-mechanisms remain unknown and treatments limited. To better understand the molecular changes associated with AD, genome-wide association studies (GWAS) have identified hundreds of candidate genes linked to the disease, like the receptor tyrosine kinase EphA1. However, demonstration of whether and how these genes cause pathology is largely lacking. Here, utilising fly genetics, we generated the first Drosophila model of human wild-type and P460L mutant EphA1 and tested the effects of Eph/ephrin signalling on AD-relevant behaviour and neurophysiology. We show that EphA1 mis-expression did not cause neurodegeneration, shorten lifespan or affect memory but flies mis-expressing the wild-type or mutant receptor were hyper-aroused, had reduced sleep, a stronger circadian rhythm and increased clock neuron activity and excitability. Over-expression of endogenous fly Eph and RNAi-mediated knock-down of Eph and its ligand ephrin affected sleep architecture and neurophysiology. Eph over-expression led to stronger circadian morning anticipation while ephrin knock-down impaired memory. A dominant negative form of the GTPase Rho1, a potential intracellular effector of Eph, led to hyper-aroused flies, memory impairment, less anticipatory behaviour and neurophysiological changes. Our results demonstrate a role of Eph/ephrin signalling in a range of behaviours affected in AD. This presents a starting point for studies into the underlying mechanisms of AD including interactions with other AD-associated genes, like Rho1, Ankyrin, Tau and APP with the potential to identify new targets for treatment.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Animais , Drosophila , Efrinas/genética , Estudo de Associação Genômica Ampla , Humanos , Neurofisiologia , Receptores da Família Eph/genética
3.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29728368

RESUMO

A central hypothesis for brain evolution is that it might occur via expansion of progenitor cells and subsequent lineage-dependent formation of neural circuits. Here, we report in vivo amplification and functional integration of lineage-specific circuitry in Drosophila Levels of the cell fate determinant Prospero were attenuated in specific brain lineages within a range that expanded not only progenitors but also neuronal progeny, without tumor formation. Resulting supernumerary neural stem cells underwent normal functional transitions, progressed through the temporal patterning cascade, and generated progeny with molecular signatures matching source lineages. Fully differentiated supernumerary gamma-amino butyric acid (GABA)-ergic interneurons formed functional connections in the central complex of the adult brain, as revealed by in vivo calcium imaging and open-field behavioral analysis. Our results show that quantitative control of a single transcription factor is sufficient to tune neuron numbers and clonal circuitry, and provide molecular insight into a likely mechanism of brain evolution.


Assuntos
Encéfalo/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Evolução Biológica , Feminino , Masculino
4.
Clin Genet ; 102(6): 494-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36046955

RESUMO

Cerebral palsy (CP) causes neurological disability in early childhood. Hypoxic-ischaemic injury plays a major role in its aetiology, nevertheless, genetic and epigenetic factors may contribute to the clinical presentation. Mutations in ADD3 (encoding γ-adducin) gene have been described in a monogenic form of spastic quadriplegic cerebral palsy (OMIM 601568). We studied a 16-year-old male with spastic diplegia. Several investigations including neurometabolic testing, brain and spine magnetic resonance imaging (MRI) and CGH-Array were normal. Further, clinical genetics assessment and whole exome sequencing (WES) gave the diagnosis. We generated an animal model using Drosophila to study the effects of γ-adducin loss and gain of function. WES revealed a biallelic variant in the ADD3 gene, NM_016824.5(ADD3): c.1100G > A, p.(Gly367Asp). Mutations in this gene have been described as an ultra-rare autosomal recessive, which is a known form of inherited cerebral palsy. Molecular modelling suggests that this mutation leads to a loss of structural integrity of γ-adducin and is therefore expected to result in a decreased level of functional protein. Pan-neuronal over-expression or knock-down of the Drosophila ortholog of ADD3 called hts caused a reduction of life span and impaired locomotion thereby phenocopying aspects of the human disease. Our animal experiments present a starting point to understand the biological processes underpinning the clinical phenotype and pathogenic mechanisms, to gain insights into potential future methods for treating or preventing ADD3 related spastic quadriplegic cerebral palsy.


Assuntos
Paralisia Cerebral , Paraparesia Espástica , Paraplegia Espástica Hereditária , Animais , Masculino , Pré-Escolar , Humanos , Adolescente , Drosophila/genética , Paraparesia Espástica/genética , Espasticidade Muscular , Mutação , Paraplegia Espástica Hereditária/genética , Proteínas de Ligação a Calmodulina/genética
5.
Mov Disord ; 36(5): 1158-1169, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33449381

RESUMO

BACKGROUND: Paroxysmal dyskinesias (PxDs) are characterized by involuntary movements and altered pre-motor circuit activity. Causative mutations provide a means to understand the molecular basis of PxDs. Yet in many cases, animal models harboring corresponding mutations are lacking. Here we utilize the fruit fly, Drosophila, to study a PxD linked to a gain-of-function (GOF) mutation in the KCNMA1/hSlo1 BK potassium channel. OBJECTIVES: We aimed to recreate the equivalent BK (big potassium) channel mutation in Drosophila. We sought to determine how this mutation altered action potentials (APs) and synaptic release in vivo; to test whether this mutation disrupted pre-motor circuit function and locomotion; and to define neural circuits involved in locomotor disruption. METHODS: We generated a knock-in Drosophila model using homologous recombination. We used electrophysiological recordings and calcium-imaging to assess AP shape, neurotransmission, and the activity of the larval pre-motor central pattern generator (CPG). We used video-tracking and automated systems to measure movement, and developed a genetic method to limit BK channel expression to defined circuits. RESULTS: Neuronal APs exhibited reduced width and an enhanced afterhyperpolarization in the PxD model. We identified calcium-dependent reductions in neurotransmitter release, dysfunction of the CPG, and corresponding alterations in movement, in model larvae. Finally, we observed aberrant locomotion and dyskinesia-like movements in adult model flies, and partially mapped the impact of GOF BK channels on movement to cholinergic neurons. CONCLUSION: Our model supports a link between BK channel GOF and hyperkinetic movements, and provides a platform to dissect the mechanistic basis of PxDs. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Drosophila , Discinesias , Potenciais de Ação/genética , Animais , Fenômenos Eletrofisiológicos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética
6.
Nature ; 527(7579): 516-20, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26580016

RESUMO

Circadian clocks are endogenous timers adjusting behaviour and physiology with the solar day. Synchronized circadian clocks improve fitness and are crucial for our physical and mental well-being. Visual and non-visual photoreceptors are responsible for synchronizing circadian clocks to light, but clock-resetting is also achieved by alternating day and night temperatures with only 2-4 °C difference. This temperature sensitivity is remarkable considering that the circadian clock period (~24 h) is largely independent of surrounding ambient temperatures. Here we show that Drosophila Ionotropic Receptor 25a (IR25a) is required for behavioural synchronization to low-amplitude temperature cycles. This channel is expressed in sensory neurons of internal stretch receptors previously implicated in temperature synchronization of the circadian clock. IR25a is required for temperature-synchronized clock protein oscillations in subsets of central clock neurons. Extracellular leg nerve recordings reveal temperature- and IR25a-dependent sensory responses, and IR25a misexpression confers temperature-dependent firing of heterologous neurons. We propose that IR25a is part of an input pathway to the circadian clock that detects small temperature differences. This pathway operates in the absence of known 'hot' and 'cold' sensors in the Drosophila antenna, revealing the existence of novel periphery-to-brain temperature signalling channels.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Receptores Ionotrópicos de Glutamato/metabolismo , Temperatura , Animais , Proteínas CLOCK/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Extremidades/inervação , Feminino , Masculino , Mecanorreceptores/citologia , Mecanorreceptores/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Células Receptoras Sensoriais/metabolismo
7.
J Physiol ; 597(23): 5707-5722, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31612994

RESUMO

As in mammals, Drosophila circadian clock neurons display rhythms of activity with higher action potential firing rates and more positive resting membrane potentials during the day. This rhythmic excitability has been widely observed but, critically, its regulation remains unresolved. We have characterized and modelled the changes underlying these electrical activity rhythms in the lateral ventral clock neurons (LNvs). We show that currents mediated by the voltage-gated potassium channels Shaw (Kv3) and Shal (Kv4) oscillate in a circadian manner. Disruption of these channels, by expression of dominant negative (DN) subunits, leads to changes in circadian locomotor activity and shortens lifespan. LNv whole-cell recordings then show that changes in Shaw and Shal currents drive changes in action potential firing rate and that these rhythms are abolished when the circadian molecular clock is stopped. A whole-cell biophysical model using Hodgkin-Huxley equations can recapitulate these changes in electrical activity. Based on this model and by using dynamic clamp to manipulate clock neurons directly, we can rescue the pharmacological block of Shaw and Shal, restore the firing rhythm, and thus demonstrate the critical importance of Shaw and Shal. Together, these findings point to a key role for Shaw and Shal in controlling circadian firing of clock neurons and show that changes in clock neuron currents can account for this. Moreover, with dynamic clamp we can switch the LNvs between morning-like and evening-like states of electrical activity. We conclude that changes in Shaw and Shal underlie the daily oscillation in LNv firing rate.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Drosophila/fisiologia , Neurônios/fisiologia , Canais de Potássio Shal/fisiologia , Canais de Potássio Shaw/fisiologia , Animais , Ritmo Circadiano , Drosophila , Feminino , Locomoção , Masculino , Modelos Biológicos
8.
Neurobiol Dis ; 130: 104507, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207389

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, which is associated with an enormous personal, social and economic burden worldwide. However, there are few current treatments with none of them targeting the underlying causes of the disease. Sleep and circadian rhythm defects are not only distressing symptoms of AD and other tauopathies and are a leading cause of care home admission but are also thought to accelerate AD pathology. Despite this, little is understood about the underlying causes of these behavioural changes. Expression of the 0N4R isoform of tau has been associated with AD pathology and we show that expressing it in the Drosophila clock network gives rise to circadian and sleep phenotypes which closely match the behavioural changes seen in human AD patients. Tauopathic flies exhibited greater locomotor activity throughout the day and night and displayed a loss of sleep, particularly at night. Under constant darkness, the locomotor behaviour of tau-expressing flies was less rhythmic than controls indicating a defect in their intrinsic circadian rhythm. Current clamp recordings from wake-promoting, pigment dispersing factor (PDF)-positive large lateral ventral clock neurons (l-LNvs) revealed elevated spontaneous firing throughout the day and night which likely underlies the observed hyperactive circadian phenotype. Interestingly, expression of tau in only the PDF-positive pacemaker neurons, which are thought to be the most important for behaviour under constant conditions, was not sufficient or even necessary to affect circadian rhythmicity. This work establishes Drosophila as a model to investigate interactions between human pathological versions of tau and the machinery that controls neuronal excitability, allowing the identification of underlying mechanisms of disease that may reveal new therapeutic targets.


Assuntos
Doença de Alzheimer/metabolismo , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Neurônios/fisiologia , Sono/fisiologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Relógios Biológicos , Proteínas de Drosophila/genética , Drosophila melanogaster , Masculino , Atividade Motora/fisiologia , Técnicas de Patch-Clamp , Tauopatias/genética , Proteínas tau/genética
9.
Proc Biol Sci ; 286(1899): 20190297, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30900536

RESUMO

All animals use sensory systems to monitor external events and have to decide whether to move. Response times are long and variable compared to reflexes, and fast escape movements. The complexity of adult vertebrate brains makes it difficult to trace the neuronal circuits underlying basic decisions to move. To simplify the problem, we investigate the nervous system and responses of hatchling frog tadpoles which swim when their skin is stimulated. Studying the neuron-by-neuron pathway from sensory to hindbrain neurons, where the decision to swim is made, has revealed two simple pathways generating excitation which sums to threshold in these neurons to initiate swimming. The direct pathway leads to short, and reliable delays like an escape response. The other includes a population of sensory processing neurons which extend firing to introduce noise and delay into responses. These neurons provide a brief, sensory memory of the stimulus, that allows tadpoles to integrate stimuli occurring within a second or so of each other. We relate these findings to other studies and conclude that sensory memory makes a fundamental contribution to simple decisions and is present in the brainstem of a basic vertebrate at a surprisingly early stage in development.


Assuntos
Memória/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Tempo de Reação , Xenopus laevis/fisiologia , Animais , Larva/fisiologia , Xenopus laevis/crescimento & desenvolvimento
10.
Proc Natl Acad Sci U S A ; 113(47): 13486-13491, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821737

RESUMO

We have characterized a light-input pathway regulating Drosophila clock neuron excitability. The molecular clock drives rhythmic electrical excitability of clock neurons, and we show that the recently discovered light-input factor Quasimodo (Qsm) regulates this variation, presumably via an Na+, K+, Cl- cotransporter (NKCC) and the Shaw K+ channel (dKV3.1). Because of light-dependent degradation of the clock protein Timeless (Tim), constant illumination (LL) leads to a breakdown of molecular and behavioral rhythms. Both overexpression (OX) and knockdown (RNAi) of qsm, NKCC, or Shaw led to robust LL rhythmicity. Whole-cell recordings of the large ventral lateral neurons (l-LNv) showed that altering Qsm levels reduced the daily variation in neuronal activity: qsmOX led to a constitutive less active, night-like state, and qsmRNAi led to a more active, day-like state. Qsm also affected daily changes in K+ currents and the GABA reversal potential, suggesting a role in modifying membrane currents and GABA responses in a daily fashion, potentially modulating light arousal and input to the clock. When directly challenged with blue light, wild-type l-LNvs responded with increased firing at night and no net response during the day, whereas altering Qsm, NKKC, or Shaw levels abolished these day/night differences. Finally, coexpression of ShawOX and NKCCRNAi in a qsm mutant background restored LL-induced behavioral arrhythmicity and wild-type neuronal activity patterns, suggesting that the three genes operate in the same pathway. We propose that Qsm affects both daily and acute light effects in l-LNvs probably acting on Shaw and NKCC.


Assuntos
Relógios Circadianos/efeitos da radiação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Drosophila melanogaster/efeitos da radiação , Proteínas Ligadas por GPI/metabolismo , Luz , Neurônios/fisiologia , Neurônios/efeitos da radiação , Alelos , Animais , Comportamento Animal , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Genótipo , Ativação do Canal Iônico/efeitos da radiação , Modelos Biológicos , Ligação Proteica/efeitos da radiação , Ácido gama-Aminobutírico/metabolismo
11.
J Physiol ; 596(24): 6219-6233, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30074236

RESUMO

KEY POINTS: Short-term working memory and decision-making are usually studied in the cerebral cortex; in many models of simple decision making, sensory signals build slowly and noisily to threshold to initiate a motor response after long, variable delays. When touched, hatchling frog tadpoles decide whether to swim; we define the long and variable delays to swimming and use whole-cell recordings to uncover the neurons and processes responsible. Firing in sensory and sensory pathway neurons is short latency, and too brief and invariant to explain these delays, while recordings from hindbrain reticulospinal neurons controlling swimming reveal a prolonged and variable build-up of synaptic excitation which can reach firing threshold and initiate swimming. We propose this excitation provides a sensory memory of the stimulus and may be generated by small reverberatory hindbrain networks. Our results uncover fundamental network mechanisms that allow animals to remember brief sensory stimuli and delay simple motor decisions. ABSTRACT: Many motor responses to sensory input, like locomotion or eye movements, are much slower than reflexes. Can simpler animals provide fundamental answers about the cellular mechanisms for motor decisions? Can we observe the 'accumulation' of excitation to threshold proposed to underlie decision making elsewhere? We explore how somatosensory touch stimulation leads to the decision to swim in hatchling Xenopus tadpoles. Delays measured to swimming in behaving and immobilised tadpoles are long and variable. Activity in their extensively studied sensory and sensory pathway neurons is too short-lived to explain these response delays. Instead, whole-cell recordings from the hindbrain reticulospinal neurons that drive swimming show that these receive prolonged, variable synaptic excitation lasting for nearly a second following a brief stimulus. They fire and initiate swimming when this excitation reaches threshold. Analysis of the summation of excitation requires us to propose extended firing in currently undefined presynaptic hindbrain neurons. Simple models show that a small excitatory recurrent-network inserted in the sensory pathway can mimic this process. We suggest that such a network may generate slow, variable summation of excitation to threshold. This excitation provides a simple memory of the sensory stimulus. It allows temporal and spatial integration of sensory inputs and explains the long, variable delays to swimming. The process resembles the 'accumulation' of excitation proposed for cortical circuits in mammals. We conclude that fundamental elements of sensory memory and decision making are present in the brainstem at a surprisingly early stage in development.


Assuntos
Memória/fisiologia , Tato/fisiologia , Xenopus laevis/fisiologia , Animais , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Larva/fisiologia , Modelos Biológicos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Tempo de Reação , Natação/fisiologia , Gravação em Vídeo
12.
J Neurosci ; 36(35): 9084-96, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581451

RESUMO

UNLABELLED: A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these photoreceptors modulate CCNN components is not well understood. Here we show that the Hofbauer-Buchner eyelets differentially modulate two classes of ventral lateral neurons (LNvs) within the Drosophila CCNN. The eyelets antagonize Cryptochrome (CRY)- and compound-eye-based photoreception in the large LNvs while synergizing CRY-mediated photoreception in the small LNvs. Furthermore, we show that the large LNvs interact with subsets of "evening cells" to adjust the timing of the evening peak of activity in a day length-dependent manner. Our work identifies a peptidergic connection between the large LNvs and a group of evening cells that is critical for the seasonal adjustment of circadian rhythms. SIGNIFICANCE STATEMENT: In animals, circadian clocks have evolved to orchestrate the timing of behavior and metabolism. Consistent timing requires the entrainment these clocks to the solar day, a process that is critical for an organism's health. Light cycles are the most important external cue for the entrainment of circadian clocks, and the circadian system uses multiple photoreceptors to link timekeeping to the light/dark cycle. How light information from these photorecptors is integrated into the circadian clock neuron network to support entrainment is not understood. Our results establish that input from the HB eyelets differentially impacts the physiology of neuronal subgroups. This input pathway, together with input from the compound eyes, precisely times the activity of flies under long summer days. Our results provide a mechanistic model of light transduction and integration into the circadian system, identifying new and unexpected network motifs within the circadian clock neuron network.


Assuntos
Ritmo Circadiano/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Fotoperíodo , Células Fotorreceptoras de Invertebrados/fisiologia , Sono/fisiologia , Animais , Animais Geneticamente Modificados , Antígenos CD4/genética , Antígenos CD4/metabolismo , Cálcio/metabolismo , Ritmo Circadiano/genética , Criptocromos , AMP Cíclico/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histamina/farmacologia , Luz , Atividade Motora/genética , Rede Nervosa/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Interferência de RNA/fisiologia , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X2/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Sono/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vias Visuais/fisiologia
13.
Neurobiol Dis ; 104: 15-23, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28435104

RESUMO

Parkinson's disease (PD) is more commonly associated with its motor symptoms and the related degeneration of dopamine (DA) neurons. However, it is becoming increasingly clear that PD patients also display a wide range of non-motor symptoms, including memory deficits and disruptions of their sleep-wake cycles. These have a large impact on their quality of life, and often precede the onset of motor symptoms, but their etiology is poorly understood. The fruit fly Drosophila has already been successfully used to model PD, and has been used extensively to study relevant non-motor behaviours in other contexts, but little attention has yet been paid to modelling non-motor symptoms of PD in this genetically tractable organism. We examined memory performance and circadian rhythms in flies with loss-of-function mutations in two PD genes: PINK1 and parkin. We found learning and memory abnormalities in both mutant genotypes, as well as a weakening of circadian rhythms that is underpinned by electrophysiological changes in clock neurons. Our study paves the way for further work that may help us understand the mechanisms underlying these neglected aspects of PD, thus identifying new targets for treatments to address these non-motor problems specifically and perhaps even to halt disease progression in its prodromal phase.


Assuntos
Proteínas de Drosophila/metabolismo , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Ritmo Circadiano/genética , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/genética , Locomoção/genética , Aprendizagem em Labirinto/fisiologia , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Odorantes , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA/fisiologia , Ubiquitina-Proteína Ligases/genética
14.
J Neurosci ; 34(2): 608-21, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403159

RESUMO

How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition.


Assuntos
Redes Neurais de Computação , Neurogênese/fisiologia , Animais , Xenopus
15.
J Physiol ; 593(19): 4423-37, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26138033

RESUMO

KEY POINTS: Deciding whether or how to initiate a motor response to a stimulus can be surprisingly slow and the underlying processes are not well understood. The neuronal circuitry that allows frog tadpoles to swim in response to touch is well characterized and includes excitatory reticulospinal neurons that drive swim circuit neurons. Build-up of excitation to reticulospinal neurons is the key decision-making step for swimming. Asymmetry in this build-up between the two sides allows bilateral initiation at the same time as avoiding inappropriate co-activation of motor antagonists. Following stronger stimuli, reticulospinal neurons are excited through a trigeminal nucleus pathway and swimming starts first on the stimulated side. If this pathway fails or is lesioned, swimming starts later on the unstimulated side. The mechanisms underlying initiation of a simple tadpole motor response may share similarities with more complex decisions in other animals, including humans. ABSTRACT: Animals take time to make co-ordinated motor responses to a stimulus. How can sensory input initiate organized movements, activating all necessary elements at the same time as avoiding inappropriate co-excitation of antagonistic muscles? In vertebrates, this process usually results in the activation of reticulospinal pathways. Young Xenopus tadpoles can respond to head-skin touch by swimming, which may start on either side. We investigate how motor networks in the brain are organized, and whether asymmetries in touch sensory pathways avoid co-activation of antagonists at the same time as producing co-ordinated movements. We record from key reticulospinal neurons in the network controlling swimming. When the head skin is stimulated unilaterally, excitation builds up slowly and asymmetrically in these neurons such that those on both sides do not fire synchronously. This build-up of excitation to threshold is the key decision-making step and determines whether swimming will start, as well as on which side. In response to stronger stimuli, the stimulated side tends to 'win' because excitation from a shorter, trigeminal nucleus pathway becomes reliable and can initiate swimming earlier on the stimulated side. When this pathway fails or is lesioned, swimming starts later and on the unstimulated side. Stochasticity in the trigeminal nucleus pathway allows unpredictable turning behaviour to weaker stimuli, conferring potential survival benefits. We locate the longer, commissural sensory pathway carrying excitation to the unstimulated side and record from its neurons. These neurons fire to head-skin stimuli but excite reticulospinal neurons indirectly. We propose that asymmetries in the sensory pathways exciting brainstem reticulospinal neurons ensure alternating and co-ordinated swimming activity from the start.


Assuntos
Comportamento Animal/fisiologia , Interneurônios/fisiologia , Natação/fisiologia , Animais , Tronco Encefálico/fisiologia , Cabeça , Larva/fisiologia , Estimulação Física , Pele , Xenopus laevis/fisiologia
16.
J Physiol ; 590(10): 2453-69, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22393253

RESUMO

While we understand how stimuli evoke sudden, ballistic escape responses, like fish fast-starts, a precise pathway from sensory stimulation to the initiation of rhythmic locomotion has not been defined for any vertebrate. We have now asked how head skin stimuli evoke swimming in hatchling frog tadpoles. Whole-cell recordings and dye filling revealed a nucleus of ∼20 trigeminal interneurons (tINs) in the hindbrain, at the level of the auditory nerve, with long, ipsilateral, descending axons. Stimulation of touch-sensitive trigeminal afferents with receptive fields anywhere on the head evoked large, monosynaptic EPSPs (∼5-20 mV) in tINs, at mixed AMPAR/NMDAR synapses. Following stimuli sufficient to elicit swimming, tINs fired up to six spikes, starting 4-8 ms after the stimulus. Paired whole-cell recordings showed that tINs produce small (∼2-6 mV), monosynaptic, glutamatergic EPSPs in the hindbrain reticulospinal neurons (descending interneurons, dINs) that drive swimming. Modelling suggested that summation of EPSPs from 18-24 tINs can make 20-50% of dINs fire. We conclude that: brief activity in a few sensory afferents is amplified by recruitment of many tINs; these relay summating excitation to hindbrain reticulospinal dINs; dIN firing then initiates activity for swimming on the stimulated side. During fictive swimming, tINs are depolarised and receive rhythmic inhibition but do not fire. Our recordings demonstrate a neuron-by-neuron pathway from head skin afferents to the reticulospinal neurons and motoneurons that drive locomotion in a vertebrate. This direct pathway, which has an important amplifier function, implies a simple origin for the complex routes to initiate locomotion in higher vertebrates.


Assuntos
Interneurônios/fisiologia , Natação/fisiologia , Núcleos do Trigêmeo/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Cabeça , Larva/fisiologia , Estimulação Física , Pele , Tato , Xenopus laevis
17.
Curr Biol ; 32(6): 1420-1428.e4, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35303416

RESUMO

Cation chloride cotransporters (CCCs) regulate intracellular chloride ion concentration ([Cl-]i) within neurons, which can reverse the direction of the neuronal response to the neurotransmitter GABA.1 Na+ K+ Cl- (NKCC) and K+ Cl- (KCC) cotransporters transport Cl- into or out of the cell, respectively. When NKCC activity dominates, the resulting high [Cl-]i can lead to an excitatory and depolarizing response of the neuron upon GABAA receptor opening, while KCC dominance has the opposite effect.1 This inhibitory-to-excitatory GABA switch has been linked to seasonal adaption of circadian clock function to changing day length,2-4 and its dysregulation is associated with neurodevelopmental disorders such as epilepsy.5-8 In Drosophila melanogaster, constant light normally disrupts circadian clock function and leads to arrhythmic behavior.9 Here, we demonstrate a function for CCCs in regulating Drosophila locomotor activity and GABA responses in circadian clock neurons because alteration of CCC expression in circadian clock neurons elicits rhythmic behavior in constant light. We observed the same effects after downregulation of the Wnk and Fray kinases, which modulate CCC activity in a [Cl-]i-dependent manner. Patch-clamp recordings from the large LNv clock neurons show that downregulation of KCC results in a more positive GABA reversal potential, while KCC overexpression has the opposite effect. Finally, KCC and NKCC downregulation reduces or increases morning behavioral activity during long photoperiods, respectively. In summary, our results support a model in which the regulation of [Cl-]i by a KCC/NKCC/Wnk/Fray feedback loop determines the response of clock neurons to GABA, which is important for adjusting behavioral activity to constant light and long-day conditions.


Assuntos
Cloretos , Proteínas de Drosophila , Simportadores de Cloreto de Sódio-Potássio , Simportadores , Animais , Cloretos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Locomoção , Proteínas Serina-Treonina Quinases , Receptores de GABA-A , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Ácido gama-Aminobutírico , Cotransportadores de K e Cl-
18.
Sci Rep ; 11(1): 155, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420240

RESUMO

Insects are ectothermal animals that are constrained in their survival and reproduction by external temperature fluctuations which require either active avoidance of or movement towards a given heat source. In Drosophila, different thermoreceptors and neurons have been identified that mediate temperature sensation to maintain the animal's thermal preference. However, less is known how thermosensory information is integrated to gate thermoresponsive motor behavior. Here we use transsynaptic tracing together with calcium imaging, electrophysiology and thermogenetic manipulations in freely moving Drosophila exposed to elevated temperature and identify different functions of ellipsoid body ring neurons, R1-R4, in thermoresponsive motor behavior. Our results show that warming of the external surroundings elicits calcium influx specifically in R2-R4 but not in R1, which evokes threshold-dependent neural activity in the outer layer ring neurons. In contrast to R2, R3 and R4d neurons, thermogenetic inactivation of R4m and R1 neurons expressing the temperature-sensitive mutant allele of dynamin, shibireTS, results in impaired thermoresponsive motor behavior at elevated 31 °C. trans-Tango mediated transsynaptic tracing together with physiological and behavioral analyses indicate that integrated sensory information of warming is registered by neural activity of R4m as input layer of the ellipsoid body ring neuropil and relayed on to R1 output neurons that gate an adaptive motor response. Together these findings imply that segregated activities of central complex ring neurons mediate sensory-motor transformation of external temperature changes and gate thermoresponsive motor behavior in Drosophila.


Assuntos
Drosophila/fisiologia , Neurônios/fisiologia , Animais , Drosophila/química , Drosophila/genética , Temperatura Alta , Atividade Motora , Neurônios/química , Neurópilo/fisiologia , Sensação Térmica
19.
Front Cell Neurosci ; 13: 409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551716

RESUMO

The cellular underpinnings of memory deficits in Alzheimer's disease (AD) are poorly understood. We utilized the tractable neural circuits sub-serving memory in Drosophila to investigate the role of impaired Ca2+ handling in memory deficits caused by expression of human 0N4R isoform of tau which is associated with AD. Expression of tau in mushroom body neuropils, or a subset of mushroom body output neurons, led to impaired memory. By using the Ca2+ reporter GCaMP6f, we observed changes in Ca2+ signaling when tau was expressed in these neurons, an effect that could be blocked by the L-type Ca2+ channel antagonist nimodipine or reversed by RNAi knock-down of the L-type channel gene. The L-type Ca2+ channel itself is required for memory formation, however, RNAi knock-down of the L-type Ca2+ channel in neurons overexpressing human tau resulted in flies whose memory is restored to levels equivalent to wild-type. Expression data suggest that Drosophila L-type Ca2+ channel mRNA levels are increased upon tau expression in neurons, thus contributing to the effects observed on memory and intracellular Ca2+ homeostasis. Together, our Ca2+ imaging and memory experiments suggest that expression of the 0N4R isoform of human tau increases the number of L-type Ca2+ channels in the membrane resulting in changes in neuronal excitability that can be ameliorated by RNAi knockdown or pharmacological blockade of L-type Ca2+ channels. This highlights a role for L-type Ca2+ channels in tauopathy and their potential as a therapeutic target for AD.

20.
Neurobiol Aging ; 77: 158-168, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825692

RESUMO

Aging has significant effects on circadian behavior across a wide variety of species, but the underlying mechanisms are poorly understood. Previous work has demonstrated the age-dependent decline in behavioral output in the model organism Drosophila. We demonstrate that this age-dependent decline in circadian output is combined with changes in daily activity of Drosophila. Aging also has a large impact on sleep behavior, significantly increasing sleep duration while reducing latency. We used electrophysiology to record from large ventral lateral neurons of the Drosophila circadian clock, finding a significant decrease in input resistance with age but no significant changes in spontaneous electrical activity or membrane potential. We propose this change contributes to observed behavioral and sleep changes in light-dark conditions. We also demonstrate a reduction in the daily plasticity of the architecture of the small ventral lateral neurons, likely underlying the reduction in circadian rhythmicity during aging. These results provide further insights into the effect of aging on circadian biology, demonstrating age-related changes in electrical activity in conjunction with the decline in behavioral outputs.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Drosophila/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Animais , Fenômenos Eletrofisiológicos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA