Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897567

RESUMO

Siglecs are cell surface receptors whose functions are tied to the binding of their sialoglycan ligands. Recently, we developed an optimized liposome formulation and used it to investigate the binding of human Siglecs (hSiglec) against a panel of gangliosides. Animal models, more specifically murine models, are used to understand human biology; however, species-specific differences can complicate the interpretation of the results. Herein, we used our optimized liposome formulation to dissect the interactions between murine Siglecs (mSiglecs) and gangliosides to assess the appropriateness of mSiglecs as a proxy to better understand the biological roles of hSiglec-ganglioside interactions. Using our optimized liposome formulation, we found that ganglioside binding is generally conserved between mice and humans with mSiglec-1, -E, -F, and -15 binding multiple gangliosides like their human counterparts. However, in contrast to the hSiglecs, we observed little to no binding between the mSiglecs and ganglioside GM1a. Detailed analysis of mSiglec-1 interacting with GM1a and its structural isomer, GM1b, suggests that mSiglec-1 preferentially binds α2-3-linked sialic acids presented from the terminal galactose residue. The ability of mSiglecs to interact or not interact with gangliosides, particularly GM1a, has implications for using mice to study neurodegenerative diseases, infections, and cancer, where interactions between Siglecs and glycolipids have been proposed to modulate these human diseases.


Assuntos
Gangliosídeos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Gangliosídeos/metabolismo , Camundongos , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lipossomos/metabolismo , Lectinas/metabolismo , Lectinas/química , Ligação Proteica , Antígenos CD/metabolismo , Antígenos CD/genética
2.
J Am Chem Soc ; 146(31): 21700-21709, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052014

RESUMO

Interactions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) present in cell membranes are implicated in a wide range of biological processes. However, studying GSL binding is hindered by the paucity of purified GSLs and the weak affinities typical of monovalent GBP-GSL interactions. Native mass spectrometry (nMS) performed using soluble model membranes is a promising approach for the discovery of GBP ligands, but the detection of weak interactions remains challenging. The present work introduces MEmbrane ANchor-assisted nMS (MEAN-nMS) for the detection of low-affinity GBP-GSL complexes. The assay utilizes a membrane anchor, produced by covalent cross-linking of the GBP and a lipid in the membrane, to localize the GBP on the surface and promote GSL binding. Ligands are identified by nMS detection of intact GBP-GSL complexes (MEAN-nMS) or using a catch-and-release (CaR) strategy, wherein GSLs are released from GBP-GSL complexes upon collisional activation and detected (MEAN-CaR-nMS). To establish reliability, a library of purified gangliosides incorporated into nanodiscs was screened against human immune lectins, and the results compared with affinities of the corresponding ganglioside oligosaccharides. Without a membrane anchor, nMS analysis yielded predominantly false negatives. In contrast, all ligands were identified by MEAN-(CaR)-nMS, with no false positives. To highlight the potential of MEAN-CaR-nMS for ligand discovery, a natural library of GSLs was incorporated into nanodiscs and screened against human and viral proteins to uncover elusive ligands. Finally, nMS-based detection of GSL ligands directly from cells is demonstrated. This breakthrough paves the way for shotgun glycomics screening using intact cells.


Assuntos
Glicoesfingolipídeos , Espectrometria de Massas , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Espectrometria de Massas/métodos , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Ligantes , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA