Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 123(12): 1870-82, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24501218

RESUMO

Epigenetic regulatory mechanisms are implicated in the pathogenesis of acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). Recent progress suggests that proteins involved in epigenetic control are amenable to drug intervention, but little is known about the cancer-specific dependency on epigenetic regulators for cell survival and proliferation. We used a mouse model of human AML induced by the MLL-AF9 fusion oncogene and an epigenetic short hairpin RNA (shRNA) library to screen for novel potential drug targets. As a counter-screen for general toxicity of shRNAs, we used normal mouse bone marrow cells. One of the best candidate drug targets identified in these screens was Jmjd1c. Depletion of Jmjd1c impairs growth and colony formation of mouse MLL-AF9 cells in vitro as well as establishment of leukemia after transplantation. Depletion of JMJD1C impairs expansion and colony formation of human leukemic cell lines, with the strongest effect observed in the MLL-rearranged ALL cell line SEM. In both mouse and human leukemic cells, the growth defect upon JMJD1C depletion appears to be primarily due to increased apoptosis, which implicates JMJD1C as a potential therapeutic target in leukemia.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Mieloide Aguda/genética , Oxirredutases N-Desmetilantes/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Epigênese Genética , Técnicas de Silenciamento de Genes , Genes myb , Genes myc , Histona-Lisina N-Metiltransferase/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Leucemia Experimental/genética , Leucemia Experimental/patologia , Leucemia Mieloide Aguda/patologia , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Oxirredutases N-Desmetilantes/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Ensaio Tumoral de Célula-Tronco
2.
Nature ; 464(7286): 306-10, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20075857

RESUMO

The Polycomb group (PcG) proteins have an important role in controlling the expression of genes essential for development, differentiation and maintenance of cell fates. The Polycomb repressive complex 2 (PRC2) is believed to regulate transcriptional repression by catalysing the di- and tri-methylation of lysine 27 on histone H3 (H3K27me2/3). At present, it is unknown how the PcG proteins are recruited to their target promoters in mammalian cells. Here we show that PRC2 forms a stable complex with the Jumonji- and ARID-domain-containing protein, JARID2 (ref. 4). Using genome-wide location analysis, we show that JARID2 binds to more than 90% of previously mapped PcG target genes. Notably, we show that JARID2 is sufficient to recruit PcG proteins to a heterologous promoter, and that inhibition of JARID2 expression leads to a major loss of PcG binding and to a reduction of H3K27me3 levels on target genes. Consistent with an essential role for PcG proteins in early development, we demonstrate that JARID2 is required for the differentiation of mouse embryonic stem cells. Thus, these results demonstrate that JARID2 is essential for the binding of PcG proteins to target genes and, consistent with this, for the proper differentiation of embryonic stem cells and normal development.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , Ligação Proteica
3.
Plant J ; 66(3): 401-13, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21251108

RESUMO

There are 10 genes in the Arabidopsis genome that contain a domain described in the Pfam database as domain of unknown function 579 (DUF579). Although DUF579 is widely distributed in eukaryotic species, there is no direct experimental evidence to assign a function to it. Five of the 10 Arabidopsis DUF579 family members are co-expressed with marker genes for secondary cell wall formation. Plants in which two closely related members of the DUF579 family have been disrupted by T-DNA insertions contain less xylose in the secondary cell wall as a result of decreased xylan content, and exhibit mildly distorted xylem vessels. Consequently we have named these genes IRREGULAR XYLEM 15 (IRX15) and IRX15L. These mutant plants exhibit many features of previously described xylan synthesis mutants, such as the replacement of glucuronic acid side chains with methylglucuronic acid side chains. By contrast, immunostaining of xylan and transmission electron microscopy (TEM) reveals that the walls of these irx15 irx15l double mutants are disorganized, compared with the wild type or other previously described xylan mutants, and exhibit dramatic increases in the quantity of sugar released in cell wall digestibility assays. Furthermore, localization studies using fluorescent fusion proteins label both the Golgi and also an unknown intracellular compartment. These data are consistent with irx15 and irx15l defining a new class of genes involved in xylan biosynthesis. How these genes function during xylan biosynthesis and deposition is discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Parede Celular/química , Xilanos/biossíntese , Xilema/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/ultraestrutura , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Mutagênese Insercional , Mutação , Pentosiltransferases/metabolismo , Filogenia , Xilema/ultraestrutura , Xilose/metabolismo , UDP Xilose-Proteína Xilosiltransferase
4.
Nucleic Acids Res ; 35(19): 6439-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17881380

RESUMO

Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.


Assuntos
Endorribonucleases/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Endorribonucleases/isolamento & purificação , Humanos , Mapeamento de Interação de Proteínas , Subunidades Proteicas/isolamento & purificação , Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Ribonuclease P/metabolismo , Ribonucleoproteínas/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA