Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 17: 62, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26772977

RESUMO

BACKGROUND: Apoptotic cell death is a defining and ubiquitous characteristic of metazoans, but its evolutionary origins are unclear. Although Caenorhabditis and Drosophila played key roles in establishing the molecular bases of apoptosis, it is now clear that cell death pathways of these animals do not reflect ancestral characteristics. Conversely, recent work suggests that the apoptotic networks of cnidarians may be complex and vertebrate-like, hence characterization of the apoptotic complement of representatives of the basal cnidarian class Anthozoa will help us to understand the evolution of the vertebrate apoptotic network. RESULTS: We describe the Bcl-2 and caspase protein repertoires of the coral Acropora millepora, making use of the comprehensive transcriptomic data available for this species. Molecular phylogenetics indicates that some Acropora proteins are orthologs of specific mammalian pro-apoptotic Bcl-2 family members, but the relationships of other Bcl-2 and caspases are unclear. The pro- or anti-apoptotic activities of coral Bcl-2 proteins were investigated by expression in mammalian cells, and the results imply functional conservation of the effector/anti-apoptotic machinery despite limited sequence conservation in the anti-apoptotic Bcl-2 proteins. A novel caspase type ("Caspase-X"), containing both inactive and active caspase domains, was identified in Acropora and appears to be restricted to corals. When expressed in mammalian cells, full-length caspase-X caused loss of viability, and a truncated version containing only the active domain was more effective in inducing cell death, suggesting that the inactive domain might modulate activity in the full-length protein. Structure prediction suggests that the active and inactive caspase domains in caspase-X are likely to interact, resulting in a structure resembling that of the active domain in procaspase-8 and the inactive caspase domain in the mammalian c-FLIP anti-apoptotic factor. CONCLUSIONS: The data presented here confirm that many of the basic mechanisms involved in both the intrinsic and extrinsic apoptotic pathways were in place in the common ancestor of cnidarians and bilaterians. With the identification of most or all of the repertoires of coral Bcl-2 and caspases, our results not only provide new perspectives on the evolution of apoptotic pathways, but also a framework for future experimental studies towards a complete understanding of coral bleaching mechanisms, in which apoptotic cell death might be involved.


Assuntos
Apoptose/genética , Caspase 8/genética , Evolução Molecular , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sequência de Aminoácidos/genética , Animais , Antozoários/genética , Sequência Conservada/genética , Drosophila/genética , Filogenia
2.
Cell Microbiol ; 10(9): 1765-74, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18564372

RESUMO

Pore-forming toxins (PFTs) are commonly associated with bacterial pathogenesis. In eukaryotes, however, PFTs operate in the immune system or are deployed for attacking prey (e.g. venoms). This review focuses upon two families of globular protein PFTs: the cholesterol-dependent cytolysins (CDCs) and the membrane attack complex/perforin superfamily (MACPF). CDCs are produced by Gram-positive bacteria and lyse or permeabilize host cells or intracellular organelles during infection. In eukaryotes, MACPF proteins have both lytic and non-lytic roles and function in immunity, invasion and development. The structure and molecular mechanism of several CDCs are relatively well characterized. Pore formation involves oligomerization and assembly of soluble monomers into a ring-shaped pre-pore which undergoes conformational change to insert into membranes, forming a large amphipathic transmembrane beta-barrel. In contrast, the structure and mechanism of MACPF proteins has remained obscure. Recent crystallographic studies now reveal that although MACPF and CDCs are extremely divergent at the sequence level, they share a common fold. Together with biochemical studies, these structural data suggest that lytic MACPF proteins use a CDC-like mechanism of membrane disruption, and will help understand the roles these proteins play in immunity and development.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Perforina/química , Perforina/imunologia , Animais , Membrana Celular/química , Membrana Celular/imunologia , Cristalografia por Raios X , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Humanos , Organelas/química , Organelas/imunologia , Estrutura Secundária de Proteína
3.
PLoS One ; 8(2): e56042, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405250

RESUMO

Human Cytomegalovirus (CMV) reactivation continues to influence lung transplant outcomes. Cross-reactivity of anti-viral memory T cells against donor human leukocyte antigens (HLA) may be a contributing factor. We identified cross-reactive HLA-A*02:01-restricted CMV-specific cytotoxic T lymphocytes (CTL) co-recognizing the NLVPMVATV (NLV) epitope and HLA-B27. NLV-specific CD8+ T cells were expanded for 13 days from 14 HLA-A*02:01/CMV seropositive healthy donors and 11 lung transplant recipients (LTR) then assessed for the production of IFN-γ and CD107a expression in response to 19 cell lines expressing either single HLA-A or -B class I molecules. In one healthy individual, we observed functional and proliferative cross-reactivity in response to B*27:05 alloantigen, representing approximately 5% of the NLV-specific CTL population. Similar patterns were also observed in one LTR receiving a B27 allograft, revealing that the cross-reactive NLV-specific CTL gradually increased (days 13-193 post-transplant) before a CMV reactivation event (day 270) and reduced to basal levels following viral clearance (day 909). Lung function remained stable with no acute rejection episodes being reported up to 3 years post-transplant. Individualized immunological monitoring of cross-reactive anti-viral T cells will provide further insights into their effects on the allograft and an opportunity to predict sub-clinical CMV reactivation events and immunopathological complications.


Assuntos
Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Infecções por Citomegalovirus/imunologia , Transplante de Pulmão/imunologia , Linfócitos T Citotóxicos/imunologia , Ativação Viral/imunologia , Adulto , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Estudos de Casos e Controles , Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Feminino , Seguimentos , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Antígenos HLA/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/virologia , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA