Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13564, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866879

RESUMO

Connectivity aids the recovery of populations following disturbances, such as coral bleaching and tropical cyclones. Coral larval connectivity is a function of physical connectivity and larval behaviour. In this study, we used OceanParcels, a particle tracking simulator, with 2D and 3D velocity outputs from a high resolution hydrodynamic-biogeochemical marine model (RECOM) to simulate the dispersal and settlement of larvae from broadcast spawning Acropora corals in the Moore Reef cluster, northern Great Barrier Reef, following the annual spawning events in 2015, 2016 and 2017. 3D velocity simulations showed 19.40-68.80% more links and sinks than those of 2D simulations. Although the patterns of connectivity among sites vary over days and years, coral larvae consistently dispersed from east to west in the cluster domain, with some sites consistently acting as sources or sinks for local larval recruitment. Results can inform coral reef intervention plans for climate change, such as the design of marine protected areas and the deployment of proposed interventions within reef clusters. For example, the wider benefits of interventions (e.g., deployment of heat adapted corals) may be optimised when deployed at locations that are a source of larvae to others within comparable habitats across the reef cluster.


Assuntos
Antozoários , Recifes de Corais , Larva , Antozoários/fisiologia , Animais , Larva/fisiologia , Mudança Climática , Ecossistema , Branqueamento de Corais
2.
Proc Biol Sci ; 279(1749): 4907-13, 2012 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-23075843

RESUMO

Adaptation to divergent ecological niches can result in speciation. Traits subject to disruptive selection that also contribute to non-random mating will facilitate speciation with gene flow. Such 'magic' or 'multiple-effect' traits may be widespread and important for generating biodiversity, but strong empirical evidence is still lacking. Although there is evidence that putative ecological traits are indeed involved in assortative mating, evidence that these same traits are under divergent selection is considerably weaker. Heliconius butterfly wing patterns are subject to positive frequency-dependent selection by predators, owing to aposematism and Müllerian mimicry, and divergent colour patterns are used by closely related species to recognize potential mates. The amenability of colour patterns to experimental manipulation, independent of other traits, presents an excellent opportunity to test their role during speciation. We conducted field experiments with artificial butterflies, designed to match natural butterflies with respect to avian vision. These were complemented with enclosure trials with live birds and real butterflies. Our experiments showed that hybrid colour-pattern phenotypes are attacked more frequently than parental forms. For the first time, we demonstrate disruptive ecological selection on a trait that also acts as a mating cue.


Assuntos
Aves/fisiologia , Borboletas/fisiologia , Comportamento Predatório , Seleção Genética , Animais , Borboletas/genética , Cor , Cadeia Alimentar , Hibridização Genética , Preferência de Acasalamento Animal , Panamá , Fenótipo , Especificidade da Espécie
3.
Ecol Evol ; 11(5): 2209-2220, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717449

RESUMO

Native biodiversity is threatened by invasive species in many terrestrial and marine systems, and conservation managers have demonstrated successes by responding with eradication or control programs. Although invasive species are often the direct cause of threat to native species, ecosystems can react in unexpected ways to their removal or reduction. Here, we use theoretical models to predict boom-bust dynamics, where the removal of predatory or competitive pressure from a native herbivore results in oscillatory population dynamics (boom-bust), which can endanger the native species' population in the short term. We simulate control activities, applied to multiple theoretical three-species Lotka-Volterra ecosystem models consisting of vegetation, a native herbivore, and an invasive predator. Based on these communities, we then develop a predictive tool that-based on relative parameter values-predicts whether control efforts directed at the invasive predator will lead to herbivore release followed by a crash. Further, by investigating the different functional responses, we show that model structure, as well as model parameters, are important determinants of conservation outcomes. Finally, control strategies that can mitigate these negative consequences are identified. Managers working in similar data-poor ecosystems can use the predictive tool to assess the probability that their system will exhibit boom-bust dynamics, without knowing exact community parameter values.

4.
PLoS One ; 14(8): e0211444, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31442226

RESUMO

Species and ecosystems usually face more than one threat. The damage caused by these multiple threats can accumulate nonlinearly: either subadditively, when the joint damage of combined threats is less than the damages of both threats individually added together, or superadditively, when the joint damage is greater than the two individual damages added together. These additivity dynamics are commonly attributed to the nature of the threatening processes, but conflicting empirical observations challenge this assumption. Here, we use a theoretical model to demonstrate that the additivity of threats can change with different magnitudes of threat impacts (effect of a threat on the population parameter, like growth rate). We use a harvested single-species population model to integrate the effects of multiple threats on equilibrium abundance. Our results reveal that threats do not always display consistent additive behavior, even in simple systems. Instead, their additivity depends on the magnitudes of the impacts of two threats, and the population parameter that is impacted by each threat. In our model specifically, when multiple threats have a low impact on the growth rate of a population, they display superadditive dynamics. In contrast, threats that impact the species' carrying capacity are always additive or subadditive. These dynamics can be understood by reference to the curvature of the relationship between a given population parameter (e.g., growth) and equilibrium population size. Our results suggest that management actions can achieve amplified benefits if they target low-amplitude threats that affect the growth rate, since these will be in a superadditive phase. More generally, our results suggest that cumulative impact theory should focus more than previously on the magnitude of the impact on the population parameter, and should be cautious about attributing additive dynamics to particular threat combinations.


Assuntos
Ecossistema , Modelos Teóricos
5.
BMC Biol ; 4: 11, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16630334

RESUMO

BACKGROUND: The view that gene flow between related animal species is rare and evolutionarily unimportant largely antedates sensitive molecular techniques. Here we use DNA sequencing to investigate a pair of morphologically and ecologically divergent, non-sibling butterfly species, Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae), whose distributions overlap in Central and Northwestern South America. RESULTS: In these taxa, we sequenced 30-45 haplotypes per locus of a mitochondrial region containing the genes for cytochrome oxidase subunits I and II (CoI/CoII), and intron-spanning fragments of three unlinked nuclear loci: triose-phosphate isomerase (Tpi), mannose-6-phosphate isomerase (Mpi) and cubitus interruptus (Ci) genes. A fifth gene, dopa decarboxylase (Ddc) produced sequence data likely to be from different duplicate loci in some of the taxa, and so was excluded. Mitochondrial and Tpi genealogies are consistent with reciprocal monophyly, whereas sympatric populations of the species in Panama share identical or similar Mpi and Ci haplotypes, giving rise to genealogical polyphyly at the species level despite evidence for rapid sequence divergence at these genes between geographic races of H. melpomene. CONCLUSION: Recent transfer of Mpi haplotypes between species is strongly supported, but there is no evidence for introgression at the other three loci. Our results demonstrate that the boundaries between animal species can remain selectively porous to gene flow long after speciation, and that introgression, even between non-sibling species, can be an important factor in animal evolution. Interspecific gene flow is demonstrated here for the first time in Heliconius and may provide a route for the transfer of switch-gene adaptations for Müllerian mimicry. The results also forcefully demonstrate how reliance on a single locus may give an erroneous picture of the overall genealogical history of speciation and gene flow.


Assuntos
Borboletas/genética , Modelos Genéticos , Animais , Evolução Biológica , Proteínas de Ligação a DNA/genética , Dopa Descarboxilase/genética , Proteínas de Drosophila/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fluxo Gênico , Haplótipos , Íntrons , Manose-6-Fosfato Isomerase/genética , Filogenia , Especificidade da Espécie , Fatores de Transcrição/genética , Triose-Fosfato Isomerase/genética
6.
Mol Biol Evol ; 19(12): 2176-90, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446809

RESUMO

Recent adaptive radiations provide excellent model systems for understanding speciation, but rapid diversification can cause problems for phylogenetic inference. Here we use gene genealogies to investigate the phylogeny of recent speciation in the heliconiine butterflies. We sequenced three gene regions, intron 3 ( approximately 550 bp) of sex-linked triose-phosphate isomerase (Tpi), intron 3 ( approximately 450 bp) of autosomal mannose-phosphate isomerase (Mpi), and 1,603 bp of mitochondrial cytochrome oxidase subunits I and II (COI and COII), for 37 individuals from 25 species of Heliconius and related genera. The nuclear intron sequences evolved at rates similar to those of mitochondrial coding sequences, but the phylogenetic utility of introns was restricted to closely related geographic populations and species due to high levels of indel variation. For two sister species pairs, Heliconius erato-Heliconius himera and Heliconius melpomene-Heliconius cydno, there was highly significant discordance between the three genes. At mtDNA and Tpi, the hypotheses of reciprocal monophyly and paraphyly of at least one species with respect to its sister could not be distinguished. In contrast alleles sampled from the third locus, Mpi, showed polyphyletic relationships between both species pairs. In all cases, recent coalescence of mtDNA lineages within species suggests that polyphyly of nuclear genes is not unexpected. In addition, very similar alleles were shared between melpomene and cydno, implying recent gene flow. Our finding of discordant genealogies between genes is consistent with models of adaptive speciation with ongoing gene flow and highlights the need for multiple locus comparisons to resolve phylogeny among closely related species.


Assuntos
Borboletas/genética , Filogenia , Animais , Sequência de Bases , Borboletas/classificação , Primers do DNA , DNA Mitocondrial/genética , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA