Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(12): 9887-9903, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132463

RESUMO

Anti-DNA antibodies are known to be classical serological hallmarks of systemic lupus erythematosus (SLE). In addition to high-affinity antibodies, the autoantibody pool also contains natural catalytic anti-DNA antibodies that recognize and hydrolyze DNA. However, the specificity of such antibodies is uncertain. In addition, DNA binding to a surface such as the cell membrane, can also affect its recognition by antibodies. Here, we analyzed the hydrolysis of short oligodeoxyribonucleotides (ODNs) immobilized on the microarray surface and in solution by catalytic anti-DNA antibodies from SLE patients. It has been shown that IgG antibodies from SLE patients hydrolyze ODNs more effectively both in solution and on the surface, compared to IgG from healthy individuals. The data obtained indicate a more efficient hydrolysis of ODNs in solution than immobilized ODNs on the surface. In addition, differences in the specificity of recognition and hydrolysis of certain ODNs by anti-DNA antibodies were revealed, indicating the formation of autoantibodies to specific DNA motifs in SLE. The data obtained expand our understanding of the role of anti-DNA antibodies in SLE. Differences in the recognition and hydrolysis of surface-tethered and dissolved ODNs need to be considered in DNA microarray applications.

2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834811

RESUMO

The cell-free DNA (cfDNA) levels are known to increase in biological fluids in various pathological conditions. However, the data on circulating cfDNA in severe psychiatric disorders, including schizophrenia, bipolar disorder (BD), and depressive disorders (DDs), is contradictory. This meta-analysis aimed to analyze the concentrations of different cfDNA types in schizophrenia, BD, and DDs compared with healthy donors. The mitochondrial (cf-mtDNA), genomic (cf-gDNA), and total cfDNA concentrations were analyzed separately. The effect size was estimated using the standardized mean difference (SMD). Eight reports for schizophrenia, four for BD, and five for DDs were included in the meta-analysis. However, there were only enough data to analyze the total cfDNA and cf-gDNA in schizophrenia and cf-mtDNA in BD and DDs. It has been shown that the levels of total cfDNA and cf-gDNA in patients with schizophrenia are significantly higher than in healthy donors (SMD values of 0.61 and 0.6, respectively; p < 0.00001). Conversely, the levels of cf-mtDNA in BD and DDs do not differ compared with healthy individuals. Nevertheless, further research is needed in the case of BD and DDs due to the small sample sizes in the BD studies and the significant data heterogeneity in the DD studies. Additionally, further studies are needed on cf-mtDNA in schizophrenia or cf-gDNA and total cfDNA in BD and DDs due to insufficient data. In conclusion, this meta-analysis provides the first evidence of increases in total cfDNA and cf-gDNA in schizophrenia but shows no changes in cf-mtDNA in BD and DDs. Increased circulating cfDNA in schizophrenia may be associated with chronic systemic inflammation, as cfDNA has been found to trigger inflammatory responses.


Assuntos
Transtorno Bipolar , Ácidos Nucleicos Livres , Transtornos Mentais , Esquizofrenia , Humanos , Transtorno Bipolar/genética , Esquizofrenia/genética , DNA Mitocondrial
3.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768537

RESUMO

Chemokines are known to be immunoregulatory proteins involved not only in lymphocyte chemotaxis to the site of inflammation, but also in neuromodulation, neurogenesis, and neurotransmission. Multiple lines of evidence suggest a peripheral proinflammatory state and neuroinflammation in at least a third of patients with schizophrenia. Therefore, chemokines can be active players in these processes. In this systematic review, we analyzed the available data on chemokine dysregulation in schizophrenia and the association of chemokines with neuroinflammation. It has been shown that there is a genetic association of chemokine and chemokine receptor gene polymorphisms in schizophrenia. Besides, the most reliable data confirmed by the results of meta-analyses showed an increase in CXCL8/IL-8, CCL2/MCP-1, CCL4/MIP-1ß, CCL11/eotaxin-1 in the blood of patients with schizophrenia. An increase in CXCL8 has been found in cerebrospinal fluid, but other chemokines have been less well studied. Increased/decreased expression of genes of chemokine and their receptors have been found in different areas of the brain and peripheral immune cells. The peripheral proinflammatory state may influence the expression of chemokines since their expression is regulated by pro- and anti-inflammatory cytokines. Mouse models have shown an association of schizophrenia with dysregulation of the CX3CL1-CX3CR1 and CXCL12-CXCR4 axes. Altogether, dysregulation in chemokine expression may contribute to neuroinflammation in schizophrenia. In conclusion, this evidence indicates the involvement of chemokines in the neurobiological processes associated with schizophrenia.


Assuntos
Esquizofrenia , Animais , Camundongos , Esquizofrenia/genética , Doenças Neuroinflamatórias , Quimiocinas/metabolismo , Citocinas/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL4 , Quimiotaxia de Leucócito , Quimiocina CCL5
4.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239982

RESUMO

Histones play vital roles in chromatin function and gene transcription; however, they are very harmful in the intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin-proteolipid sheath. Antibodies-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against individual histones (H2A, H1, H2B, H3, and H4) and MBP were isolated from the blood of experimental-autoimmune-encephalomyelitis-prone C57BL/6 mice by several affinity chromatographies. These Abs-abzymes corresponded to various stages of EAE development: spontaneous EAE, MOG, and DNA-histones accelerated the onset, acute, and remission stages. IgGs-abzymes against MBP and five individual histones showed unusual polyreactivity in the complex formation and enzymatic cross-reactivity in the specific hydrolysis of the H2A histone. All the IgGs of 3-month-old mice (zero time) against MBP and individual histones demonstrated from 4 to 35 different H2A hydrolysis sites. The spontaneous development of EAE over 60 days led to a significant change in the type and number of H2A histone hydrolysis sites by IgGs against five histones and MBP. Mice treatment with MOG and the DNA-histone complex changed the type and number of H2A hydrolysis sites compared to zero time. The minimum number (4) of different H2A hydrolysis sites was found for IgGs against H2A (zero time), while the maximum (35) for anti-H2B IgGs (60 days after mice treatment with DNA-histone complex). Overall, it was first demonstrated that at different stages of EAE evolution, IgGs-abzymes against individual histones and MBP could significantly differ in the number and type of specific sites of H2A hydrolysis. The possible reasons for the catalytic cross-reactivity and great differences in the number and type of histone H2A cleavage sites were analyzed.


Assuntos
Encefalomielite Autoimune Experimental , Histonas , Animais , Camundongos , Histonas/metabolismo , Hidrólise , Proteína Básica da Mielina/metabolismo , Camundongos Endogâmicos C57BL , DNA/metabolismo , Autoanticorpos/metabolismo
5.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049736

RESUMO

Histones have vital roles in chromatin functioning and gene transcription. At the same time, they are pernicious in intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin-proteolipid sheath. Antibody-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against five individual histones (H2B, H1, H2A, H3, and H4) and MBP were isolated from the blood of experimental autoimmune encephalomyelitis-prone C57BL/6 mice by affinity chromatography. Abzymes corresponding to various stages of EAE development, including spontaneous EAE, myelin oligodendrocyte glycoprotein (MOG)- and DNA-histone complex-accelerated onset, as well as acute and remission stages, were analyzed. IgG-abzymes against MBP and five individual histones showed unusual polyreactivity in complex formation and enzymatic cross-reactivity in the specific hydrolysis of H2B histone. All IgGs against MBP and individual histones in 3-month-old mice (zero time) demonstrated from 4 to 11 different H2B hydrolysis sites. Spontaneous development of EAE during 60 days led to a significant change in the type and number of H2B hydrolysis sites by IgGs against the five histones and MBP. Mouse treatment with MOG and DNA-histone complex changed the type and number of H2B hydrolysis sites compared to zero time. The minimum number (3) of different H2B hydrolysis sites was found for IgGs against H3 20 days after mouse immunization with DNA-histone complex, whereas the maximum number (33) for anti-H2B IgGs was found 60 days after mouse treatment with DNA-histone complex. Overall, this is the first study to demonstrate that at different stages of EAE evolution, IgG-abzymes against five individual histones and MBP could significantly differ in the specific sites and number of H2B hydrolysis sites. Possible reasons for the catalytic cross-reactivity and significant differences in the number and type of histone H2B cleavage sites were analyzed.


Assuntos
Anticorpos Catalíticos , Encefalomielite Autoimune Experimental , Animais , Camundongos , Histonas/metabolismo , Hidrólise , Proteína Básica da Mielina/metabolismo , Camundongos Endogâmicos C57BL , DNA/metabolismo , Glicoproteína Mielina-Oligodendrócito , Anticorpos Catalíticos/metabolismo , Imunoglobulina G
6.
J Dairy Sci ; 105(2): 950-964, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34802738

RESUMO

Mother's milk provides newborns with various nutrients (e.g., enzymes, proteins, peptides, hormones, antibodies) that help babies grow and protect them from bacterial and viral infections. The functions of many components of breast milk can be very different from their corresponding functions in body fluids of healthy adults. Catalytic antibodies (abzymes) that hydrolyze peptides, proteins, DNA, RNA, and oligosaccharides were detected not only in human milk, but also in the blood sera of autoimmune patients. However, abzymes with unexpected synthetic activities (lipids, oligosaccharides, and protein kinase activities) were revealed in milk that were not found in the blood of autoimmune patients. The nutrition of infants with fresh milk has a very specific role; newborns are well protected by antibodies of mother's milk (passive immunity). Protease abzymes were found in the blood sera of autoimmune patients, whereas healthy humans usually do not contain such autoantibodies. Here, we present the first evidence that the milk of healthy mothers contains secretory (s)IgA that effectively hydrolyze 5 histones (e.g., H1, H2A, H2B, H3, and H4) and myelin basic protein (MBP). Several rigid criteria were applied to show that protease activity is an intrinsic property of sIgA. Milk abzymes against 5 histones cannot hydrolyze different control proteins except histones and MBP, whereas autoantibodies against MBP split this protein and 5 histones. Antibodies against histones and MBP exhibit complexation polyreactivity as well as specific and unusual catalytic cross-reactivity. With some exceptions, the specific sites of hydrolysis of H1, H2A, and H2B by sIgA against histones do not coincide with the sites of hydrolysis by abzymes against MBP. On the whole, fresh human milk is a very specific source of many of the most unusual antibodies and abzymes.


Assuntos
Histonas , Proteína Básica da Mielina , Animais , Humanos , Hidrólise , Imunoglobulina A Secretora , Imunoglobulina G/metabolismo , Leite Humano/metabolismo , Proteína Básica da Mielina/metabolismo
7.
Int J Mol Sci ; 23(15)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897678

RESUMO

Human milk provides neonates with various components that ensure newborns' growth, including protection from bacterial and viral infections. In neonates, the biological functions of many breast milk components can be very different compared with their functions in the body fluids of healthy adults. Catalytic antibodies-abzymes hydrolyzing peptides, proteins, DNAs, RNAs, and oligosaccharides were detected not only in the blood sera of autoimmune patients but also in human milk. Non-coding microRNAs (18-25 nucleotides) are intra- and extra-cellular molecules of different human fluids. MiRNAs possess many different biological functions, including regulating several hundred genes. Five of them: miR-148a-3p, miR-200c-3p, miR-378a-3p, miR-146b-5p and let-7f-5p were previously found in milk in increased concentrations. Here, we determined number of copies of these miRNAs in 1 mg of analyzed cells, lipid fractions, and plasmas of human milk samples. The relative amount of microRNA decreases in the following order: cells ¼ lipid fraction > plasma. IgGs and sIgAs were isolated from milk plasma, and their activity in the hydrolysis of five microRNAs was compared. In general, sIgAs demonstrated higher miRNA-hydrolyzing activity than IgGs antibodies. The hydrolysis of five microRNAs by sIgAs and IgGs was site-specific. The relative activity of each microRNA hydrolysis was very dependent on the milk preparation. The correlation coefficients between the content of five RNAs in milk plasma and the relative activity of sIgAs than IgGs in their hydrolysis strongly depended on individual microRNA and changed from -0.01 to 0.80. Thus, it was shown that milk contains specific antibodies-abzymes hydrolyzing microRNAs specific for human milk.


Assuntos
Anticorpos Catalíticos , MicroRNAs , Adulto , Anticorpos Catalíticos/química , Feminino , Humanos , Hidrólise , Imunoglobulina A Secretora/metabolismo , Imunoglobulina G/metabolismo , Recém-Nascido , Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite Humano/metabolismo , Plasmócitos/metabolismo
8.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292926

RESUMO

Human milk provides neonates with various components that ensure newborns' growth, including protection from bacterial and viral infections. In neonates, the biological functions of many breast milk components can be very different compared with their functions in the body fluids of healthy adults. Catalytic antibodies (abzymes) that hydrolyze peptides, proteins, DNAs, RNAs, and oligosaccharides were detected, not only in the blood sera of autoimmune patients, but also in human milk. Non-coding microRNAs (18−25 nucleotides) are intra- and extracellular molecules of different human fluids. MiRNAs possess many different biological functions, including the regulation of several hundred genes. Five of them, miR-148a-3p, miR-200c-3p, miR-378a-3p, miR-146b-5p, and let-7f-5p, were previously found in milk in high concentrations. Here, we determined relative numbers of miRNA copies in 1 mg of analyzed cells, lipid fractions, and plasmas of human milk samples. The relative amount of microRNA decreases in the following order: cells ≈ lipid fraction > plasma. IgGs and sIgAs were isolated from milk plasma, and their activities in the hydrolysis of five microRNAs was compared. In general, sIgAs demonstrated higher miRNA-hydrolyzing activities than IgGs antibodies. The hydrolysis of five microRNAs by sIgAs and IgGs was site-specific. The relative activity of each microRNA hydrolysis was very dependent on the milk preparation. The correlation coefficients between the contents of five RNAs in milk plasma, and the relative activities of sIgAs compared to IgGs in hydrolyses, strongly depended on individual microRNA, and changed from −0.01 to 0.80. Thus, it was shown that milk contains specific antibodies (abzymes) that hydrolyze microRNAs specific for human milk.


Assuntos
Anticorpos Catalíticos , MicroRNAs , Recém-Nascido , Adulto , Feminino , Humanos , Anticorpos Catalíticos/química , Leite Humano/metabolismo , Hidrólise , MicroRNAs/genética , MicroRNAs/metabolismo , Plasmócitos/metabolismo , Imunoglobulina A Secretora/metabolismo , Imunoglobulina G , Oligossacarídeos/metabolismo , Lipídeos , Nucleotídeos/metabolismo
9.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012448

RESUMO

Histones play vital roles in chromatin functioning and gene transcription, but in intercellular space, they are harmful due to stimulating systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the most important protein of the axon myelin-proteolipid sheath. Antibodies-abzymes with different catalytic activities are critical and specific features of some autoimmune diseases. Five IgG preparations against histones (H4, H1, H2A, H2B, and H3) and against MBP corresponding to different spontaneous, MOG (myelin oligodendrocyte glycoprotein of mice), and DNA-histones that accelerated onset, acute, and remission stages of experimental autoimmune encephalomyelitis (EAE; model of human multiple sclerosis) development were obtained from EAE-prone C57BL/6 mice by several affinity chromatographies. IgG-abzymes against five histones and MBP possess unusual polyreactivity in complexation and catalytic cross-reactivity in the hydrolysis of histone H4. IgGs against five histones and MBP corresponding to 3 month-old mice (zero time) in comparison with Abs corresponding to spontaneous development of EAE during 60 days differ in type and number of H4 sites for hydrolysis. Immunization of mice with MOG and DNA-histones complex results in an acceleration of EAE development associated with an increase in the activity of antibodies in H4 hydrolysis. Twenty days after mouse immunization with MOG or DNA-histones complex, the IgGs hydrolyze H4 at other additional sites compared to zero time. The maximum number of different sites of H4 hydrolysis was revealed for IgGs against five histones and MBP at 60 days after immunization of mice with MOG and DNA-histones. Overall, it first showed that at different stages of EAE development, abzymes could significantly differ in specific sites of H4 hydrolysis.


Assuntos
Anticorpos Catalíticos , Encefalomielite Autoimune Experimental , Animais , DNA/metabolismo , Histonas/metabolismo , Humanos , Hidrólise , Imunoglobulina G , Lactente , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito
10.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430309

RESUMO

Changes in cytokine profiles and cytokine networks are known to be a hallmark of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). However, cytokine profiles research studies are usually based on the analysis of a small number of cytokines and give conflicting results. In this work, we analyzed cytokine profiles of 41 analytes in patients with SLE and MS compared with healthy donors using multiplex immunoassay. The SLE group included treated patients, while the MS patients were drug-free. Levels of 11 cytokines, IL-1b, IL-1RA, IL-6, IL-9, IL-10, IL-15, MCP-1/CCL2, Fractalkine/CX3CL1, MIP-1a/CCL3, MIP-1b/CCL4, and TNFa, were increased, but sCD40L, PDGF-AA, and MDC/CCL22 levels were decreased in SLE patients. Thus, changes in the cytokine profile in SLE have been associated with the dysregulation of interleukins, TNF superfamily members, and chemokines. In the case of MS, levels of 10 cytokines, sCD40L, CCL2, CCL3, CCL22, PDGF-AA, PDGF-AB/BB, EGF, IL-8, TGF-a, and VEGF, decreased significantly compared to the control group. Therefore, cytokine network dysregulation in MS is characterized by abnormal levels of growth factors and chemokines. Cross-disorder analysis of cytokine levels in MS and SLE showed significant differences between 22 cytokines. Protein interaction network analysis showed that all significantly altered cytokines in both SLE and MS are functionally interconnected. Thus, MS and SLE may be associated with impaired functional relationships in the cytokine network. A cytokine correlation networks analysis revealed changes in correlation clusters in SLE and MS. These data expand the understanding of abnormal regulatory interactions in cytokine profiles associated with autoimmune diseases.


Assuntos
Lúpus Eritematoso Sistêmico , Esclerose Múltipla , Humanos , Citocinas , Quimiocinas , Interleucinas
11.
J Cell Mol Med ; 25(5): 2493-2504, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33560578

RESUMO

We have previously shown that immunization of C57BL/6 mice, prone to spontaneous development of experimental autoimmune encephalomyelitis (EAE), with three antigens (MOG35-55 , DNA-histone complex or DNA-methylated BSA complex), alters the differentiation profiles of bone marrow haematopoietic stem cells (HSCs). These are associated with the production of autoantibodies (auto-Abs) against these antigens and the formation of abzymes hydrolysing DNA, MOG, myelin basic protein (MBP) and histones. Immunization of mice with antigens accelerates the development of EAE. This work is the first to analyse the ratio of auto-Abs without and with catalytic activities at different stages of EAE development (onset, acute and remission phases) after immunization of mice with the three specific antigens. Prior to immunization and during spontaneous in-time development of EAE, the concentration of auto-Abs against MBP, MOG, histones and DNA and activities of IgG antibodies in the hydrolysis of substrates increased in parallel; correlation coefficients = +0.69-0.94. After immunization with MOG, DNA-histone complex or DNA-met-BSA complex, both positive (from +0.13 to +0.98) and negative correlations (from -0.09 to -0.69) were found between these values. Our study is the first showing that depending on the antigen, the relative amount of harmful auto-Abs without and abzymes with low or high catalytic activities may be produced only at onset and in acute or remission phases of EAE. The antigen governs the EAE development rate, whereby the ratio of auto-Abs without catalytic activity and with enzymatic activities of harmful abzymes hydrolysing MBP, MOG, histones and DNA varies strongly between different disease phases.


Assuntos
Anticorpos Catalíticos/imunologia , Antígenos/imunologia , Autoanticorpos/imunologia , Suscetibilidade a Doenças/imunologia , Encefalomielite Autoimune Experimental/etiologia , Animais , Autoantígenos/imunologia , Diferenciação Celular , Proliferação de Células , DNA/imunologia , Células-Tronco Hematopoéticas/metabolismo , Histonas/imunologia , Histonas/metabolismo , Hidrólise , Imunização , Imunoglobulina G/imunologia , Camundongos
12.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802122

RESUMO

Autoantibodies-abzymes hydrolyzing DNA, myelin basic protein, and oligosaccharides have been revealed in the sera of patients with multiple sclerosis (MS). In MS, specific microRNAs are found in blood and cerebrospinal fluid, which are characterized by increased expression. Autoantibodies, specifically hydrolyzing four different miRNAs, were first detected in the blood of schizophrenia patients. Here, we present the first evidence that 23 IgG antibodies of MS patients effectively recognize and hydrolyze four neuroregulatory miRNAs (miR-137, miR-9-5p, miR-219-2-3p, and miR-219-5p) and four immunoregulatory miRNAs (miR-21-3p, miR-146a-3p, miR-155-5p, and miR-326). Several known criteria were checked to show that the recognition and hydrolysis of miRNAs is an intrinsic property of MS IgGs. The hydrolysis of all miRNAs is mostly site-specific. The major and moderate sites of the hydrolysis of each miRNA for most of the IgG preparations coincided; however, some of them showed other specific sites of splitting. Several individual IgGs hydrolyzed some miRNAs almost nonspecifically at nearly all internucleoside bonds or demonstrated a combination of site-specific and nonspecific splitting. Maximum average relative activity (RA) was observed in the hydrolysis of miR-155-5p for IgGs of patients of two types of MS-clinically isolated syndrome and relapsing-remitting MS-but was also high for patients with primary progressive and secondary progressive MS. Differences between RAs of IgGs of four groups of MS patients and healthy donors were statistically significant (p < 0.015). There was a tendency of decreasing efficiency of hydrolysis of all eight miRNAs during remission compared with the exacerbation of the disease.


Assuntos
Anticorpos Catalíticos/sangue , Autoanticorpos/sangue , Imunoglobulina G/sangue , MicroRNAs/metabolismo , Esclerose Múltipla/sangue , Adulto , Feminino , Humanos , Hidrólise , Masculino , Pessoa de Meia-Idade
13.
Molecules ; 26(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435385

RESUMO

Histones play important roles in chromatin functioning and gene transcription, but in the intercellular space, they are harmful since they stimulate systemic inflammatory and toxic responses. Electrophoretically homogeneous IgGs against myelin basic protein (MBP), as well as H3 and H4 histones, were isolated from sera of HIV-infected patients. In contrast to known classical proteases, these IgGs split exclusively only histones and MBP but no other control proteins. Among 13 sites of hydrolysis of H3 by IgGs against H3 and 14 sites for anti-MBP IgGs, only two sites of the hydrolysis were the same. Between seven cleavage sites of H4 with IgGs against H4 and 9 sites of this histone hydrolysis by antibodies against MBP, only three sites were the same. The sites of hydrolysis of H3 (and H4) with abzymes against these histones and against MBP were different, but several expended protein clusters containing hydrolysis sites are partially overlapped. The existence of enzymatic cross-reactivity of abzymes against H3 and H4 and MBP represents a great menace to humans since due to cell apoptosis, histones constantly occur in human blood. They can hydrolyze MBP of the myelin sheath of axons and play a negative role in the pathogenesis of HIV-infected patients.


Assuntos
Infecções por HIV/imunologia , Histonas/imunologia , Imunoglobulina G/imunologia , Proteína Básica da Mielina/imunologia , Adulto , Reações Antígeno-Anticorpo , Feminino , Humanos , Hidrólise , Masculino , Adulto Jovem
14.
J Dairy Sci ; 103(8): 6782-6797, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32600770

RESUMO

For breast-fed infants, human milk is a source of various nutrients (e.g., proteins, peptides, antibodies) and bioactive components that promote neonatal growth and protect infants from viral and bacterial infection. Moreover, in terms of infant nutrition and protection the functions of many human milk components are very different from those of blood and other biological fluids of healthy adults. For example, catalytic antibodies ("abzymes") with synthetic activities (protein, oligosaccharide, and lipid kinase activities) have been found in human breast milk that are absent in the blood of healthy people. Abzymes with hydrolyzing functions have been detected not only in milk, but also in the blood of patients with autoimmune diseases. Obviously, feeding newborns human milk has a very specific role and it is a unique aspect of mammalian nutrition. Ribonuclease and DNase autoantibodies or abzymes are found in milk and blood of lactating women, but not in blood sera of healthy men and nonpregnant woman. Here, we present the first evidence that human milk secretory IgA molecules (sIgA) can effectively hydrolyze ribooligonucleotides containing 23 different bases [(pN)23 ribooligonucleotides] and 4 microRNAs: miR-9-5p, miR-219-2-3p, miR-137, and miR-219a-5p. Ribonuclease activity is an inherent property of sIgAs. We showed that 7 individual sIgAs hydrolyzed the ribooligonucleotides (pA)23, (pU)23, and (pC)23 nonspecifically and with comparable efficiency, whereas hydrolysis of the 4 microRNAs by sIgAs was site-specific. Sites of hydrolysis of 4 microRNAs by IgG from blood of patients with schizophrenia have been previously identified. The sites of hydrolysis of 4 microRNAs by sIgA-abzymes were very different from the previously identified sites of hydrolysis by IgG in patients with schizophrenia. In addition, in contrast to IgG, milk sIgAs efficiently hydrolyzed microRNAs in their loop and duplex regions.


Assuntos
Imunoglobulina A Secretora/metabolismo , MicroRNAs/metabolismo , Leite Humano/metabolismo , Ribonucleotídeos/metabolismo , Adulto , Animais , Anticorpos Catalíticos/química , Anticorpos Catalíticos/metabolismo , Feminino , Humanos , Hidrólise , Lactação , Leite Humano/imunologia , Oligossacarídeos/análise
15.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008051

RESUMO

Schizophrenia is known to be accompanied not only with an imbalance in the neurotransmitter systems but also with immune system dysregulation and chronic low-grade inflammation. Extracellular histones and nucleosomes as damage-associated molecular patterns (DAMPs) trigger systemic inflammatory and toxic reactions by activating Toll-like receptors. In this work, we obtained the first evidence that polyclonal IgGs of patients with schizophrenia effectively hydrolyze five histones (H1, H2a, H2b, H3, and H4). Several strict criteria were used to demonstrate that histone-hydrolyzing activity is a property of the analyzed IgGs. The IgGs histone-hydrolyzing activity level, depending on the type of histone (H1-H4), was statistically significantly 6.1-20.2 times higher than that of conditionally healthy donors. The investigated biochemical properties (pH and metal ion dependences, kinetic characteristics) of these natural catalytic IgGs differed markedly from canonical proteases. It was previously established that the generation of natural catalytic antibodies is an early and clear sign of impaired humoral immunity. One cannot, however, exclude that histone-hydrolyzing antibodies may play a positive role in schizophrenia pathogenesis because histone removal from circulation or the inflamed area minimizes the inflammatory responses. Thus, it can be assumed that histone-hydrolyzing antibodies are a link between humoral immunity and inflammatory responses in schizophrenia.


Assuntos
Histonas/imunologia , Imunoglobulina G/imunologia , Inflamação/imunologia , Esquizofrenia/imunologia , Adulto , Anticorpos Catalíticos/imunologia , Catálise , Feminino , Humanos , Imunidade Humoral/imunologia , Inflamação/patologia , Cinética , Masculino , Pessoa de Meia-Idade , Nucleossomos/imunologia , Proteólise , Esquizofrenia/patologia
16.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751323

RESUMO

Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The therapeutic effects of intravenous immunoglobulins (IVIg) are associated with both the canonical and non-canonical functions of antibodies. In this review, catalytic antibodies will be considered in more detail, since their formation is associated with inflammatory and autoimmune diseases. We will systematically summarize the diversity of catalytic antibodies in normal and pathological conditions. Translational perspectives of knowledge about natural antibodies for IVIg therapy will be also discussed.


Assuntos
Anticorpos Biespecíficos/genética , Anticorpos Catalíticos/genética , Doenças Autoimunes/imunologia , Isotipos de Imunoglobulinas/genética , Doenças Neurodegenerativas/imunologia , Imunidade Adaptativa , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/metabolismo , Anticorpos Catalíticos/química , Anticorpos Catalíticos/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Doenças Autoimunes/terapia , Humanos , Imunidade Inata , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Isotipos de Imunoglobulinas/química , Isotipos de Imunoglobulinas/classificação , Isotipos de Imunoglobulinas/metabolismo , Imunoglobulinas Intravenosas/uso terapêutico , Testes Imunológicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia
17.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443717

RESUMO

Mother's milk provides breast-fed infants with various nutrients, including peptides, proteins, DNA, RNA, antibodies, and other bioactive components promoting neonatal growth and protecting infants from viral and bacterial infection. The functions of many human milk components regarding the nutrition and protection of newborns may be very different compared to those of various biological fluids of healthy adults. For example, human milk contains catalytic antibodies (abzymes) with protein, lipid, and oligosaccharide kinase activities, which are absent in the biological fluids of healthy people and autoimmune patients. Obviously, the nutrition of infants with fresh breast milk is a special phenomenon having a very specific and important role. Here, we have shown that mother's milk IgGs effectively split homo-(pN)23, and four miRNAs: miR-137, miR-219a-5p, miR-219-2-3p, and miR-9-5p. It was shown that ribonuclease activity is a unique property of milk IgGs. On average, individual IgGs hydrolyze (pA)23, (pU)23, and (pC)23 nonspecifically and with comparable efficiency, whereas the hydrolysis of four miRNAs is predominately site-specific. The specific sites of the hydrolysis of four miRNAs by IgGs from the blood of schizophrenic (SCZ) patients and secretory immunoglobulins A (sIgAs) from human milk were found earlier. The sites of the hydrolysis of four miRNAs by milk IgGs and sIgA-abzymes are almost the same, but are significantly different in comparison with those for SCZ IgGs. In addition, in contrast to the SCZ IgGs, milk IgGs and sIgAs efficiently hydrolyzed miRNAs in the duplex regions formed by their terminal sequences.


Assuntos
Imunoglobulina G/genética , MicroRNAs/genética , Anticorpos/genética , Anticorpos/imunologia , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Aleitamento Materno , Humanos , Hidrólise , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Recém-Nascido , MicroRNAs/metabolismo , Leite Humano/metabolismo , Oligossacarídeos
18.
J Mol Recognit ; 32(12): e2807, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31389073

RESUMO

The analysis of IgGs to protect humans from oxidative stress through oxidation of harmful compounds was carried out. We have compared here for the first time peroxidase (in the presence of H2 O2 ) and oxidoreductase (in the absence of H2 O2 ) activities of IgGs from sera of healthy humans and patients with systemic lupus erythematosus (SLE) and multiple sclerosis (MS). In addition, substrate specificity of SLE and MS IgG preparations in the oxidation of different compounds was analyzed: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 3,3'-diaminobenzidine (DAB), homovanillic acid (HVA), o-phenylenediamine (OPD), α-naphthol, 3-amino-9-ethylcarbazole (AEC), p-hydroquinone (pHQ), and adrenaline. IgGs of healthy humans and SLE and MS patients oxidized DAB, ABTS, and OPD due to their peroxidase and oxidoreductase activities, while other compounds were substrates of IgGs only in the presence of H2 O2 : adrenaline was not oxidized by both activities of IgGs. The average SLE IgGs peroxidase activity increased statistically significant in comparison with abzymes from healthy humans in the order (-fold): OPD (1.2) <  DAB (1.7) < α-naphtol (2.2) ≤ AEC (2.4) < ABTS (4.5) < 5-ASA (10.6), while with oxidoreductase activity: OPD (1.8) ≤ DAB (2.1-fold) < ABTS (5.0). Only HVA was oxidized by IgGs with peroxidase activity of healthy donors faster than by SLE (1.3-fold) and MS abzymes (2.4-fold). In the oxidation of several substrates, only three IgGs of MS patients were used. The data speak of a tendency to increase the peroxidase and oxidoreductase activities of MS IgGs in comparison with healthy donors, but to a lesser extent: OPD (1.1 to 1.2-fold) ≤ ABTS (1.2 to 1.8-fold). It was shown that development of SLE and MS leads to increase in peroxidase and oxidoreductase activities of IgGs toward most of classical substrates. Thus, abzymes can serve as an additional factor of reactive oxygen species detoxification protecting of patients with SLE and MS from some harmful compounds somewhat better than healthy peoples.


Assuntos
Imunoglobulina G/sangue , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Oxirredutases/sangue , Peroxidases/sangue , 3,3'-Diaminobenzidina/metabolismo , Adulto , Feminino , Humanos , Imunoglobulina G/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Oxirredução , Especificidade por Substrato , Adulto Jovem
19.
J Mol Recognit ; 32(7): e2777, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30761635

RESUMO

Lactoferrin (LF) is an Fe3+ -binding glycoprotein first recognized in milk and then in other epithelial secretions and barrier body fluids to which many different functions have been attributed to LF, including protection from iron-induced lipid peroxidation, immunomodulation, cell growth regulation, DNA and RNA binding, as well as transcriptional activation, еtс. The polyfunctional physiological role of LF is still unclear, but it has been suggested to be responsible for primary defense against microbial and viral infections. Here, we present the first evidence that LF preparations isolated from milk of 18 cows of different breeds possess various levels of metal-dependent DNase and metal-independent RNase activities. For univocal assignment of DNase and RNase activities to cow LF, it was subjected to SDS-PAGE using gels with copolymerized calf thymus DNA or polymeric yeast RNA. In situ analysis was revealed DNase and RNase activities only in the gel zones corresponding to homogeneous LF. In contrast to human LF, cow LF possesses a relatively low cytotoxicity towards human tumor cells. The discovery that cow LF has these activities may contribute to understanding the multiple physiological functions of this extremely polyfunctional protein, including its protective role against microbial and viral infections. The computational spatial model of cow LF complex with DNA was obtained: according to the model positively charged residues of LF contact with DNA.


Assuntos
DNA/metabolismo , Lactoferrina/metabolismo , RNA Fúngico/metabolismo , Animais , Cruzamento , Bovinos , DNA/química , Feminino , Hidrólise , Lactoferrina/química , Modelos Moleculares , Conformação Proteica , RNA Fúngico/química , Timo/química , Leveduras/genética
20.
J Mol Recognit ; 32(2): e2759, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30112774

RESUMO

Several different theories of schizophrenia (SCZ) were discussed; the causes of this disease are not yet clear. Using ELISA, it was shown that titers of autoantibodies against myelin basic protein (MBP) in SCZ patients are ~1.8-fold higher than in healthy individuals but 5.0-fold lower than in patients with multiple sclerosis. Several rigid criteria were checked to show that the MBP-hydrolyzing activity is an intrinsic property of SCZ IgGs. Approximately 82% electrophoretically homogeneous SCZ IgGs purified using several affinity sorbents including Sepharose with immobilized MBP hydrolyze specifically only MBP but not many other tested proteins. The average relative activity of IgGs from patients with negative symptoms was 2.5-fold higher than that of patients with positive symptoms of SCZ, and it increases with the duration of this pathology. It was shown that abzymes are the earliest statistically significant markers of many autoimmune pathologies. Our findings surmise that the immune systems of individual SCZ patients can generate a variety of anti-MBP abzymes with different catalytic properties, which can attack MBP of the myelin-proteolipid shell of axons. Therefore, autoimmune processes together with other mechanisms can play an important role in SCZ pathogenesis. MBP-hydrolyzing antibodies were previously detected in the blood of 80% to 90% of patients with systemic lupus erythematosus (SLE) and multiple sclerosis (MS). In addition, some similar neuropsychiatric indicators of disease common to SLE, MS, and SCZ were described in the literature. Thus, the destruction of the myelin sheath and the production of MBP-hydrolyzing antibodies can be a common phenomenon for some different diseases.


Assuntos
Autoimunidade/fisiologia , Lúpus Eritematoso Sistêmico/metabolismo , Esclerose Múltipla/metabolismo , Proteína Básica da Mielina/metabolismo , Esquizofrenia/imunologia , Esquizofrenia/metabolismo , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Esclerose Múltipla/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA