RESUMO
Damming of rivers poses a significant threat to freshwater ecosystems. Previous studies about the impact of damming on river ecosystems have mostly focused on large dams, with the impact of small dams largely unknown. Further, while the impacts of dams on aquatic communities have been widely studied, the effect on energy flow across river food webs remains unclear. In recent years, long-chain polyunsaturated fatty acid analysis (LC-PUFA) has emerged as a promising technique for assessing food quality and trophic interactions. In this study, LC-PUFA was applied to explore the nutritional effects of small dams on river food webs. A field investigation was conducted at upstream and downstream areas of three small dams in the headwaters of Dongjiang River, China, to evaluate the impact of small dams on the nutritional quality of basal food sources, and their consequent impacts on aquatic consumers and trophic links. Basal food sources (i.e., submerged leaves, macrophytes and periphyton) and aquatic consumers (i.e., macroinvertebrates and fish) were collected, and their fatty acid (FA) composition was measured. Our results showed that periphyton, rather than submerged leaves and macrophytes, was the primary high-quality food source for aquatic consumers, providing them with LC-PUFA, irrespective of whether sites were upstream or downstream. Damming the streams induced changes in aqueous nutrient concentrations (TP, PO4-P, DIN, and TN) from upstream to downstream of the dams, leading to significant variation in periphyton FA content. Compared with periphyton collected at downstream sites, periphyton at upstream sites contained higher LC-PUFA, but lower short-chain PUFA. Differences in periphyton LC-PUFA between the upstream and downstream areas of dams were reflected in the FA profiles of invertebrate grazers and filterers, and further transferred to fish. Furthermore, decreased periphyton nutritional quality at the downstream of the dams was one of the reasons for the simplification of stream food webs. Our results indicated that small dams negatively affected food webs, emphasizing the importance of high-quality food sources for stream ecosystems. We suggest that the trophic integrity of river food webs hinges on the dietary availability of periphyton supplying physiologically highly required nutrients for consumers and must thus not be compromised by damming of streams or other alterations.
Assuntos
Ecossistema , Cadeia Alimentar , Animais , Rios , Água Doce , Ácidos Graxos , Qualidade dos AlimentosRESUMO
The inter-relationships between cellular phosphorus (P) storage, dissolved inorganic P (DIP) uptake affinity, alkaline phosphatase activity (APA) and dissolved inorganic nitrogen (DIN) concentrations were studied in two ubiquitous diazotrophic freshwater cyanobacteria, Raphidiopsis raciborskii (six strains) and Chrysosporum ovalisporum (two strains). DIP uptake kinetics were measured using rates of incorporation of the radio-isotope, 33P and APA as a proxy for DOP-ester utilization. The study showed that DIP uptake of individual strains followed Michaelis-Menten kinetics (modified in our study to incorporate cellular P quotas), but differed with DIN and P availability, and between growth stages. High-affinity DIP uptake and APA were activated below a P quota threshold of approximately 0.01 µg P µg-1 C across the species and strains. C. ovalisporum had significantly higher APA and P quotas (per unit C and cell) but lower uptake affinity than R. raciborskii. Demand for DIP by C. ovalisporum increased when N fixation occurred, but typically not for R. raciborskii. Our results indicate that cyanobacterial species and strains differ in their strategies to P limiting conditions, and highlight the interplay between N and P. Physiological adaptations like APA and diazotrophy of cyanobacteria adapting to low DIP and/or DIN conditions may occur simultaneously and drive species dominance in oligotrophic environments.
Assuntos
Cianobactérias , Fósforo , Água Doce , Cinética , Fixação de NitrogênioRESUMO
Targeting catchment nutrient critical source areas (CSAs) (areas contributing most of the nutrients in a catchment) is an efficient way to prioritize remediation sites for reducing nutrient runoff to waterways. We tested if the soil slurry approach - with particle sizes and sediment concentrations representative of those in streams during high rainfall events - can be used to identify potential CSAs within individual land use types, examine fire impacts, and identify the contribution of leaf litter in topsoil to nutrient export in subtropical catchments. We first confirmed the slurry approach met the prerequisite to identify CSAs with relatively higher nutrient contribution (not absolute load estimation) by comparing the slurry sampling with stream nutrient monitoring data. We validated that: 1) differences in slurry total nitrogen to phosphorus mass ratios from different land uses were consistent with stream monitoring data; and 2) our estimated nutrient export contribution from agricultural land, via the slurry approach, was comparable to that derived from monitoring data. Additionally, we found nutrient concentrations in slurries differed across soil types and management practice within individual land uses, correlating with nutrient concentrations in fine particles. These results indicate the slurry approach can be used to identify potential small-scale CSAs. Slurry results from burnt soils were also comparable to other studies showing increased levels of dissolved nutrient loss and higher nitrogen than phosphorus loss, than non-burnt soils. The slurry method also showed the contribution of leaf litter to slurry nutrient concentrations from topsoil was greater for dissolved nutrients than particulate nutrients, indicating different forms of nutrients need to be considered for impacts of vegetation. Our study reveals that the slurry method can be used to identify potential small-scale CSAs within the same land use from erosion and can account for impacts of vegetation and bushfires, providing timely information to guide catchment restoration actions.
Assuntos
Monitoramento Ambiental , Solo , Fósforo/análise , Nitrogênio/análise , NutrientesRESUMO
Nutrient offsetting allows nutrient point source polluters to pay for diffuse source nutrient reductions, or improvements in nutrient load reductions from alternative point sources. These programs have the potential to provide a more cost-effective approach to achieve water quality goals in waterways compared to infrastructure upgrades. However, worldwide adoption of nutrient offset/trading has not been realized. Here, we identified the biophysical-chemical knowledge gaps that can act as barriers to adopting these programs and summarized areas where further research is needed. This includes a) evaluating if any appropriate spatial scale (local-, catchment-, or regional-scale) and time scale (especially for areas with dry/wet cycles) exists to achieve nutrient load management goals, and b) quantifying nutrient characteristic differences and load contributions between point and diffuse sources to determine possible offsets between the two. Where offsets are appropriate, there is also a need to 1) improve monitoring design and reduce modelling uncertainties to better quantify diffuse nutrient loads; 2) quantify and manage uncertainties in catchment interventions to reduce nutrient loads, and design effective long-term monitoring and maintenance to sustain intervention outcomes; 3) prioritize areas within catchments that are key nutrient sources for catchment interventions to achieve the optimal outcomes for nutrient load management and catchment and aquatic ecosystem health; and 4) develop methodologies to determine the environmental equivalency ratio between different nutrient sources in terms of ecosystem effects. This would include identifying the best metric to quantify equivalency ratios, determining discharge patterns for different nutrient sources, and linking this with ecosystem responses across seasons and in the downstream receiving environment. Addressing the identified knowledge gaps will improve the program feasibility assessment process as well as confidence and certainty in the environmental outcomes of nutrient offsetting.
Assuntos
Ecossistema , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Qualidade da Água , Estações do AnoRESUMO
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%-90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis-aggregate-associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co-occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.
Assuntos
Euryarchaeota , Microcystis , Archaea/genética , Euryarchaeota/genética , Eutrofização , Lagos/microbiologia , Metano , Microcystis/genética , RNA Ribossômico 16S/genéticaRESUMO
RATIONALE: The coupled analysis of δ13 C and δ15 N stable isotope values of blubber and skin biopsy samples is widely used to study the diet of free-ranging cetaceans. Differences in the lipid content of these tissues can affect isotopic variability because lipids are depleted in 13 C, reducing the bulk tissue 13 C/12 C. This variability in carbon isotope values can be accounted for either by chemically extracting lipids from the tissue or by using mathematical lipid normalisation models. METHODS: This study examines (a) the effects of chemical lipid extraction on δ13 C and δ15 N values in blubber and skin of southern hemisphere humpback whales, (b) whether chemical lipid extraction is more favourable than mathematical lipid correction and (c) which of the two tissues is more appropriate for dietary studies. Strategic comparisons were made between chemical lipid extraction and mathematical lipid correction and between blubber and skin tissue δ13 C and δ15 N values, as well as C:N ratios. Six existing mathematical normalisation models were tested for their efficacy in estimating lipid-free δ13 C for skin. RESULTS: Both δ13 C and δ15 N values of lipid-extracted skin (δ13 C: -25.57, δ15 N: 6.83) were significantly higher than those of bulk skin (δ13 C: -26.97, δ15 N: 6.15). Five of the six tested lipid normalisation models had small error terms for predicting lipid-free δ13 C values. The average C:N ratio of lipid-extracted skin was within the lipid-free range reported in other studies, whereas the average C:N ratio of blubber was higher than previously reported. CONCLUSIONS: These results highlight the need to account for lipids when analysing δ13 C and δ15 N values from the same sample. For optimised dietary assessments using parallel isotope analysis from a single sample, we recommend the use of unextracted skin tissue. δ15 N values should be obtained from unextracted skin, whereas δ13 C values may be adequately lipid corrected by a mathematical correction.
Assuntos
Tecido Adiposo/química , Jubarte/fisiologia , Marcação por Isótopo/métodos , Lipídeos , Pele/química , Animais , Isótopos de Carbono/análise , Lipídeos/análise , Lipídeos/isolamento & purificação , Espectrometria de Massas , Isótopos de Nitrogênio/análiseRESUMO
Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial test of the hypothesized Microcystis interactome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that M. aeruginosa is cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. While Microcystis and the microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global Microcystis blooms, thereby providing initial support for the hypothesized Microcystis interactome.
RESUMO
Nitrogen fixation has been proposed as a mechanism that allows the diazotrophic cyanobacterium, Cylindrospermopsis raciborskii, to bloom in nitrogen-limited freshwater systems. However, it is unclear whether dinitrogen fixation (N2 fixation) can supplement available dissolved inorganic nitrogen (DIN) for growth, or only provides minimum nitrogen (N) for cell maintenance under DIN deplete conditions. Additionally, the rate at which cells can switch between DIN use and N2 fixation is unknown. This study investigated N2 fixation under a range of nitrate concentrations. Cultures were grown with pretreatments of nitrate replete (single dose 941 µmol NO3- · L-1 ) and N-free conditions and then either received a single dose of 941 µmol NO3- · L-1 (N941), 118 µmol NO3- · L-1 (N118) or 0 N. Heterocysts appeared from days 3 to 5 when treatments of high NO3- were transferred to N free media (N941:N0), and from day 5 in N941 transferred to N118 treatments. Conversely, transferring cells from N0 to N941 resulted in heterocysts being discarded from day 3 and day 5 for N0:N118. Heterocyst appearance correlated with a detectable rate of N2 fixation and up-regulation of nifH gene expression, the discard of heterocysts occurred after sequential reduction of nifH expression and N2 fixation. Nitrate uptake rates were not affected by pretreatment, suggesting no regulation or saturation of this uptake pathway. These data demonstrate that for C. raciborskii, N2 fixation is regulated by the production or discard of heterocysts. In conclusion, this study has shown that N2 fixation only provides enough N to support relatively low growth under N-limited conditions, and does not supplement available nitrate to increase growth rates.
Assuntos
Cianobactérias/metabolismo , Nitratos/metabolismo , Fixação de NitrogênioRESUMO
Cattle waste products high in nitrogen (N) that enter waterways via rainfall runoff can contribute to aquatic ecosystem health deterioration. It is well established that N leaching from this source can be reduced by plant assimilation, e.g. pasture grass. Additionally, N leaching can be reduced when there is sufficient carbon (C) in the soil such as plant litterfall to stimulate microbial processes, i.e. denitrification, which off-gas N from the soil profile. However, the relative importance of these two processes is not well understood. A soil microcosm experiment was conducted to determine the role of biotic processes, pasture grass and microbial activity, and abiotic processes such as soil sorption, in reducing N leaching loss, during successive additions of bovine urine. Pasture grass was the most effective soil cover in reducing N leaching losses, which leached 70% less N compared to exposed soil. Successive application of urine to the soil resulted in N accumulation, after which there was a breaking point indicated by high N leaching losses. This is likely to be due to the low C:N ratio within the soil profiles treated with urine (molar ratio 8:1) compared to water treated soils (30:1). In this experiment we examined the role of C addition in reducing N losses and showed that the addition of glucose can temporarily reduce N leaching. Overall, our results demonstrated that plant uptake of N was a more important process in preventing N leaching than microbial processes.
Assuntos
Nitrogênio/análise , Solo/química , Urina/química , Movimentos da Água , Poluentes da Água/análise , Água/química , Animais , Austrália , Carbono/análise , Bovinos , Fenômenos Químicos , Ecossistema , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Poaceae/química , Microbiologia do Solo , Poluentes do Solo/análiseRESUMO
Cylindrospermopsin (CYN) and 7-deoxy-cylindrospermopsin (dCYN) are potent hepatotoxic alkaloids produced by numerous species of cyanobacteria, including the freshwater Cylindrospermopsis raciborskii. C. raciborskii is an invasive cyanobacterium, and the study of how environmental parameters drive CYN production has received significant interest from water managers and health authorities. Light and CO2 affect cell growth and physiology in photoautotrophs, and these are potential regulators of cyanotoxin biosynthesis. In this study, we investigated how light and CO2 affect CYN and dCYN pool size as well as the expression of the key genes, cyrA and cyrK, involved in CYN biosynthesis in a toxic C. raciborskii strain. For cells growing at different light intensities (10 and 100 µmol photons m(-2) s(-1)), we observed that the rate of CYN pool size production (µCYN) was coupled to the cell division rate (µc) during batch culture. This indicated that CYN pool size under our experimental conditions is constant and cell quotas of CYN (QCYN) and dCYN (QdCYN) are fixed. Moreover, a lack of correlation between expression of cyrA and total CYN cell quotas (QCYNs) suggests that the CYN biosynthesis is regulated posttranscriptionally. Under elevated CO2 (1,300 ppm), we observed minor effects on QCYN and no effects on expression of cyrA and cyrK. We conclude that the CYN pool size is constitutive and not affected by light and CO2 conditions. Thus, C. raciborskii bloom toxicity is determined by the absolute abundance of C. raciborskii cells within the water column and the relative abundance of toxic and nontoxic strains.
Assuntos
Dióxido de Carbono/metabolismo , Cylindrospermopsis/química , Cylindrospermopsis/crescimento & desenvolvimento , Luz , Uracila/análogos & derivados , Alcaloides , Proteínas de Bactérias/genética , Toxinas Bacterianas , Toxinas de Cianobactérias , Cylindrospermopsis/genética , Cylindrospermopsis/efeitos da radiação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Pressão Parcial , Uracila/análise , Microbiologia da ÁguaRESUMO
Biotic communities are shaped by adaptations from generations of exposure to selective pressures by recurrent and often infrequent events. In large rivers, floods can act as significant agents of change, causing considerable physical and biotic disturbance while often enhancing productivity and diversity. We show that the relative balance between these seemingly divergent outcomes can be explained by the rhythmicity, or predictability of the timing and magnitude, of flood events. By analyzing biological data for large rivers that span a gradient of rhythmicity in the Neotropics and tropical Australia, we find that systems with rhythmic annual floods have higher-fish species richness, more stable avian populations, and elevated rates of riparian forest production compared with those with arrhythmic flood pulses. Intensification of the hydrological cycle driven by climate change, coupled with reductions in runoff due to water extractions for human use and altered discharge from impoundments, is expected to alter the hydrologic rhythmicity of floodplain rivers with significant consequences for both biodiversity and productivity.
Assuntos
Biodiversidade , Aves/fisiologia , Ecossistema , Peixes/fisiologia , Inundações , Florestas , Animais , Austrália , Mudança Climática , México , Rios , América do SulRESUMO
BACKGROUND: Cylindrospermopsis raciborskii is an invasive filamentous freshwater cyanobacterium, some strains of which produce toxins. Sporadic toxicity may be the result of gene deletion events, the horizontal transfer of toxin biosynthesis gene clusters, or other genomic variables, yet the evolutionary drivers for cyanotoxin production remain a mystery. Through examining the genomes of toxic and non-toxic strains of C. raciborskii, we hoped to gain a better understanding of the degree of similarity between these strains of common geographical origin, and what the primary differences between these strains might be. Additionally, we hoped to ascertain why some cyanobacteria possess the cylindrospermopsin biosynthesis (cyr) gene cluster and produce toxin, while others do not. It has been hypothesised that toxicity or lack thereof might confer a selective advantage to cyanobacteria under certain environmental conditions. RESULTS: In order to examine the fundamental differences between toxic and non-toxic C. raciborskii strains, we sequenced the genomes of two closely related isolates, CS-506 (CYN+) and CS-509 (CYN-) sourced from different lakes in tropical Queensland, Australia. These genomes were then compared to a third (reference) genome from C. raciborskii CS-505 (CYN+). Genome sizes were similar across all three strains and their G + C contents were almost identical. At least 2,767 genes were shared among all three strains, including the taxonomically important rpoc1, ssuRNA, lsuRNA, cpcA, cpcB, nifB and nifH, which exhibited 99.8-100% nucleotide identity. Strains CS-506 and CS-509 contained at least 176 and 101 strain-specific (or non-homologous) genes, respectively, most of which were associated with DNA repair and modification, nutrient uptake and transport, or adaptive measures such as osmoregulation. However, the only significant genetic difference observed between the two strains was the presence or absence of the cylindrospermopsin biosynthesis gene cluster. Interestingly, we also identified a cryptic secondary metabolite gene cluster in strain CS-509 (CYN-) and a second cryptic cluster common to CS-509 and the reference strain, CS-505 (CYN+). CONCLUSIONS: Our results confirm that the most important factor contributing to toxicity in C. raciborskii is the presence or absence of the cyr gene cluster. We did not identify any other distally encoded genes or gene clusters that correlate with CYN production. The fact that the additional genomic differences between toxic and non-toxic strains were primarily associated with stress and adaptation genes suggests that CYN production may be linked to these physiological processes.
Assuntos
Cylindrospermopsis/genética , Genoma Bacteriano , Uracila/análogos & derivados , Alcaloides , Amidinotransferases/genética , Amidoidrolases/genética , Toxinas Bacterianas , Toxinas de Cianobactérias , Cylindrospermopsis/química , Cylindrospermopsis/metabolismo , Metaboloma , Família Multigênica , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Toxinas Biológicas/biossíntese , Toxinas Biológicas/genética , Uracila/biossínteseRESUMO
Extreme rainfall from an ex-tropical cyclone caused a major flood event in the Logan River system in southeast Queensland, Australia. This resulted in a significant flood plume, containing nutrients and sediment, being discharged into the adjacent estuary/Bay system. The spatial extent of higher phytoplankton biomass (Chl a) matched the distribution of higher nutrient and sediment concentrations post-flood, suggesting nutrients fuelled phytoplankton production. Particulate nitrogen (PN) constituted over 50 % of total nitrogen in floodwaters, with lower proportions of dissolved inorganic nitrogen (DIN) and phosphate (PO4-P). Phytoplankton utilised DIN rapidly but may have maintained growth due to the release of ammonia from suspended sediments and microbial mineralisation of particulate organic nitrogen. Ammonia release from intertidal sediments contributed minimally (0.85 %) to daily phytoplankton nitrogen demands. Our study highlights the need to understand the fate of particulate nitrogen in coastal systems and its role in stimulating phytoplankton growth.
Assuntos
Baías , Biomassa , Monitoramento Ambiental , Inundações , Nitrogênio , Fitoplâncton , Nitrogênio/análise , Queensland , Nutrientes/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Fosfatos/análiseRESUMO
The response of marine and freshwater algal species to both point and non-point sources of nitrogen have not been directly compared. We compared the photosynthetic yield response (Fv/Fm) of nitrogen-starved freshwater and marine green microalgae after a 3-day exposure to fourteen treated wastewater and nine aquaculture farm effluent as well as twenty-three soil erosion sources. The combination of inorganic and organic nutrients, organic carbon, and carbon-tonitrogen ratios were most highly correlated with algal responses across all nitrogen sources (R2 = 0.69 for the freshwater species, and 0.63 for the marine species). The marine algal response also correlated with ammonium de-sorbed from sediment upon contact with marine waters. Our study highlights that organic carbon and salinity affect the bioavailability of nutrient sources for microalgae, although the mechanisms remain unclear. This provides new insights relevant to managing nitrogen pollution in both freshwater and coastal environments.
Assuntos
Clorófitas , Água Doce , Nitrogênio , Água do Mar , Poluentes Químicos da Água , Nitrogênio/análise , Poluentes Químicos da Água/análise , Água do Mar/química , Microalgas , Águas Residuárias , Aquicultura , Carbono/análiseRESUMO
Outbreaks of Microcystis blooms can affect growth of submerged plants, which in turn can inhibit cyanobacterial growth. Microcystin (MC)-producing and non-MC-producing Microcystis strains typically coexist in Microcystis-dominated blooms. However, the interaction between submerged plants and Microcystis at strain level is not clear. This study was aimed at assessing the effects of a submerged macrophyte Myriophyllum spicatum on one MC-producing versus one non-MC-producing strains of the cyanobacterium Microcystis using plant-Microcystis co-culture experiments. The impacts of Microcystis on M. spicatum were also examined. It showed that the MC-producing Microcystis strain had a higher resistance to negative impacts by the cocultured submerged plant M. spicatum than the non-MC-producing strain. By contrast, the plant M. spicatum was impacted more by the MC-producing Microcystis than the non-MC-producer. The associated bacterioplankton community was affected more by the MC-producing Microcystis than the cocultured M. spicatum. The MC cell quotas were significantly higher in the coculture treatment (the PM + treatment, p < 0.05), indicating that the production and release of MCs might be a key factor responsible for the reduced impact of M. spicatum. The higher concentrations of dissolved organic and reducing inorganic compounds might eventually exacerbate the recovering capacity of coexisting submerged plants. Overall, this study indicated that the capacity to produce MCs, as well as the density of Microcystis, should be taken into account when attempting to reestablish submerged vegetation to undertake remediation works.
Assuntos
Cianobactérias , Microcystis , MicrocistinasRESUMO
Human-induced alteration of the natural flow regime is a major threat to freshwater ecosystems and biodiversity. The effects of hydrological alteration on the structural and functional attributes of riverine communities are expected to be multiple and complex, and they may not be described easily by a single model. Based on existing knowledge of key hydrological and ecological attributes, we explored potential effects of a flow-regulation scenario on macroinvertebrate assemblage composition and diversity in two river systems in Australia's relatively undeveloped wet-dry tropics. We used a single Bayesian belief network (BBN) to model potential changes in multiple assemblage attributes within each river type during dry and wet seasons given two flow scenarios: the current, near-natural flow condition, and flow regulation. We then used multidimensional scaling (MDS) ordination to visually summarize and compare the most probable attributes of assemblages and their environment under the different scenarios. The flow-regulation scenario provided less certainty in the ecological responses of one river type during the dry season, which reduced the ability to make predictions from the BBN outputs directly. However, visualizing the BBN results in an ordination highlighted similarities and differences between the scenarios that may have been otherwise difficult to ascertain. In particular, the MDS showed that flow regulation would reduce the seasonal differentiation in hydrology and assemblage characteristics that is expected under the current low level of development. Our approach may have wider application in understanding ecosystem responses to different river management practices and should be transferred easily to other ecosystems or biotic assemblages to provide researchers, managers, and decision makers an enhanced understanding of ecological responses to potential anthropogenic disturbance.
Assuntos
Ecossistema , Atividades Humanas , Rios , Animais , Teorema de Bayes , Conservação dos Recursos Naturais , Monitoramento Ambiental , Modelos TeóricosRESUMO
Sediment denitrification plays an important role in nitrogen removal in aquatic systems. However, the importance in nitrogen removal in reservoirs, with a focus on seasonal differences of conditions such as macrophyte beds and environmental factors, is less well understood. This study examined sediment denitrification rate (Dn), and their potential controlling factors were determined in both macrophyte beds and deeper waters in the subtropical reservoir. The mean Dn in the reservoir annually was 18.0 ± 6.3 (mean ± S.E.) mmol N m-2 d-1, with significant seasonal variation (p < 0.01), i.e. 43.2 ± 12.8, 6.7 ± 6.3, and 4.0 ± 2.2 mmol N m-2 d-1 in winter, spring and summer respectively. There were no statistical differences in Dn between shallow waters with macrophyte beds and deeper waters without macrophyte beds, although macrophyte beds had higher denitrification rates in summer. The Dn rates were significantly correlated with temperature, conductivity, dissolved oxygen, pH, nitrate-nitrogen concentration (NO3--N) (p < 0.01) and turbidity (p < 0.05). Linear regression models demonstrated environmental variables explained between 36% and 76% of the variation in Dn. The correlation with NO3--N concentrations suggests that it may be a limited factor for Dn. Annual nitrogen removal of the reservoir by a combination of sediment and water denitrification was totally estimated to be 370 t N with an annual removal efficiency of approximately 11%. Nitrogen removal was much higher in winter than other seasons, with about 305 t N removed, accounting for 12% of the total nitrogen inputs. Therefore, denitrification appears to play a minor role throughout much of the year, but in winter months when nitrate accumulates, it may play a more major role.
Assuntos
Desnitrificação , Nitratos , Monitoramento Ambiental , Sedimentos Geológicos , Nitratos/análise , Nitrogênio/análiseRESUMO
Cyanobacteria harmful blooms can represent a major risk for public health due to potential release of toxins and other noxious compounds in the water. A continuous and high-resolution monitoring of the cyanobacteria population is required due to their rapid dynamics, which has been increasingly done using in-situ fluorescence of phycocyanin (f-PC) and chlorophyll a (f-Chl a). Appropriate in-situ fluorometers calibration is essential because f-PC and f-Chl a are affected by biotic and abiotic factors, including species composition. Measurement of f-PC and f-Chl a in mixed species assemblages during different growth phases - representative of most field conditions - has received little attention. We hypothesized that f-PC and f-Chl a of mixed assemblages of cyanobacteria may be accurately estimated if taxa composition and fluorescence characteristics are known. We also hypothesized that species with different morphologies would have different fluorescence per unit cell and biomass. We tested these hypotheses in a controlled culture experiment in which photosynthetic pigment fluorescence, chemical pigment extraction, optical density and microscopic enumeration of four common cyanobacteria species (Aphanocapsa sp, Microcystis aeruginosa, Dolichospermum circinale and Raphidiopsis raciborskii) were quantified. Both monocultures and mixed cultures were monitored from exponential to late stationary growth phases. The sum of fluorescence of individual species calculated for mixed samples was not significantly different than measured fluorescence of mixed cultures. Estimated and measured f-PC and f-Chl a of mixed cultures had higher correlations and smaller absolute median errors when estimations were based on fluorescence per biomass instead of fluorescence per cell. Largest errors were overestimations of measured fluorescence for species with different morphologies. Fluorescence per cell was significantly different among most species, while fluorescence per unit biomass was not, indicating that conversion of fluorescence to biomass reduces species-specific bias. This study presents new information on the effect of species composition on cyanobacteria fluorescence. Best practices of deployment and operation of fluorometers, and data-driven models supporting in-situ fluorometers calibration are discussed as suitable solutions to minimize taxa-specific bias in fluorescence estimates.
Assuntos
Cianobactérias , Ficocianina , Tamanho Celular , Clorofila/análise , Clorofila A , Monitoramento Ambiental , FluorescênciaRESUMO
David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.
Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Eutrofização , Cianobactérias/fisiologia , Fósforo , NitrogênioRESUMO
Estuaries in the tropical Gulf of Carpentaria (GOC) in Australia are under increasing pressure from catchment water development, potentially affecting productivity. We examined the potential effect of changes in freshwater inputs on the primary productivity of three estuaries (Flinders, Gilbert and Mitchell Rivers). The addition of nutrients stimulated mudflat primary production in all estuaries at multiple sampling times, suggesting chronic nutrient limitation. All three estuaries were productive with the Flinders estuary being the most productive of the three estuaries, compared to the Gilbert and Mitchell estuaries. This is despite the fact that the Flinders estuary has the shortest period of freshwater flow and more variable flows from year-to-year compared with the other estuaries. This makes the Flinders highly vulnerable to excessive water development. This study suggests that water extraction which significantly reduces freshwater inputs and associated nutrients has the potential to impact on productivity within these estuaries.