Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 48(D1): D579-D589, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31647104

RESUMO

Large-scale genome sequencing and the increasingly massive use of high-throughput approaches produce a vast amount of new information that completely transforms our understanding of thousands of microbial species. However, despite the development of powerful bioinformatics approaches, full interpretation of the content of these genomes remains a difficult task. Launched in 2005, the MicroScope platform (https://www.genoscope.cns.fr/agc/microscope) has been under continuous development and provides analysis for prokaryotic genome projects together with metabolic network reconstruction and post-genomic experiments allowing users to improve the understanding of gene functions. Here we present new improvements of the MicroScope user interface for genome selection, navigation and expert gene annotation. Automatic functional annotation procedures of the platform have also been updated and we added several new tools for the functional annotation of genes and genomic regions. We finally focus on new tools and pipeline developed to perform comparative analyses on hundreds of genomes based on pangenome graphs. To date, MicroScope contains data for >11 800 microbial genomes, part of which are manually curated and maintained by microbiologists (>4500 personal accounts in September 2019). The platform enables collaborative work in a rich comparative genomic context and improves community-based curation efforts.


Assuntos
Genes Arqueais , Genes Bacterianos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Bases de Dados Genéticas , Redes e Vias Metabólicas
3.
PLoS Comput Biol ; 16(3): e1007732, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32191703

RESUMO

The use of comparative genomics for functional, evolutionary, and epidemiological studies requires methods to classify gene families in terms of occurrence in a given species. These methods usually lack multivariate statistical models to infer the partitions and the optimal number of classes and don't account for genome organization. We introduce a graph structure to model pangenomes in which nodes represent gene families and edges represent genomic neighborhood. Our method, named PPanGGOLiN, partitions nodes using an Expectation-Maximization algorithm based on multivariate Bernoulli Mixture Model coupled with a Markov Random Field. This approach takes into account the topology of the graph and the presence/absence of genes in pangenomes to classify gene families into persistent, cloud, and one or several shell partitions. By analyzing the partitioned pangenome graphs of isolate genomes from 439 species and metagenome-assembled genomes from 78 species, we demonstrate that our method is effective in estimating the persistent genome. Interestingly, it shows that the shell genome is a key element to understand genome dynamics, presumably because it reflects how genes present at intermediate frequencies drive adaptation of species, and its proportion in genomes is independent of genome size. The graph-based approach proposed by PPanGGOLiN is useful to depict the overall genomic diversity of thousands of strains in a compact structure and provides an effective basis for very large scale comparative genomics. The software is freely available at https://github.com/labgem/PPanGGOLiN.


Assuntos
Genoma Bacteriano/genética , Genômica/métodos , Software , Algoritmos , Bactérias/classificação , Bactérias/genética , Análise Multivariada
4.
New Phytol ; 213(3): 1477-1486, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27551821

RESUMO

The origin of bread wheat (Triticum aestivum; AABBDD) has been a subject of controversy and of intense debate in the scientific community over the last few decades. In 2015, three articles published in New Phytologist discussed the origin of hexaploid bread wheat (AABBDD) from the diploid progenitors Triticum urartu (AA), a relative of Aegilops speltoides (BB) and Triticum tauschii (DD). Access to new genomic resources since 2013 has offered the opportunity to gain novel insights into the paleohistory of modern bread wheat, allowing characterization of its origin from its diploid progenitors at unprecedented resolution. We propose a reconciled evolutionary scenario for the modern bread wheat genome based on the complementary investigation of transposable element and mutation dynamics between diploid, tetraploid and hexaploid wheat. In this scenario, the structural asymmetry observed between the A, B and D subgenomes in hexaploid bread wheat derives from the cumulative effect of diploid progenitor divergence, the hybrid origin of the D subgenome, and subgenome partitioning following the polyploidization events.


Assuntos
Evolução Biológica , Pão , Triticum/genética , Elementos de DNA Transponíveis/genética , Genoma de Planta , Modelos Genéticos , Mutagênese Insercional/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Sintenia/genética
5.
Database (Oxford) ; 20232023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37159239

RESUMO

SyntenyViewer is a public web-based tool relying on a relational database available at https://urgi.versailles.inrae.fr/synteny delivering comparative genomics data and associated reservoir of conserved genes between angiosperm species for both fundamental (evolutionary studies) and applied (translational research) applications. SyntenyViewer is made available for (i) providing comparative genomics data for seven major botanical families of flowering plants, (ii) delivering a robust catalog of 103 465 conserved genes between 44 species and inferred ancestral genomes, (iii) allowing us to investigate the evolutionary fate of ancestral genes and genomic regions in modern species through duplications, inversions, deletions, fusions, fissions and translocations, (iv) use as a tool to conduct translational research of key trait-related genes from model species to crops and (v) offering to host any comparative genomics data following simplified procedures and formats Database URL https://urgi.versailles.inrae.fr/synteny.


Assuntos
Magnoliopsida , Pesquisa Translacional Biomédica , Genômica , Produtos Agrícolas , Bases de Dados Factuais
6.
Plant Methods ; 16: 98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714430

RESUMO

MOTIVATION: In 2005, researchers from the French National Research Institute for Agriculture, Food and Environment (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, INRAE) started a collaboration with the French farmers' seed network Réseau Semences Paysannes (RSP) on bread wheat participatory breeding (PPB). The aims were: (1) to study on-farm management of crop diversity, (2) to develop population-varieties adapted to organic and low-inputs agriculture, (3) to co-develop tools and methods adapted to on-farm experiments. In this project, researchers and farmers' organizations needed to map the history and life cycle of the population-varieties using network formalism to represent relationships between seed lots. All this information had to be centralized and stored in a database. RESULTS: We describe here SHiNeMaS (Seeds History and Network Management System) a web tool database. SHiNeMaS aims to provide useful interfaces to track seed lot history and related data (phenotyping, environment, cultural practices). Although SHiNeMaS has been developed in the context of a bread wheat participatory breeding program, the database has been designed to manage any kind and even multiple cultivated plant species. SHiNeMaS is available under Affero GPL licence and uses free technologies such as the Python language, Django framework or PostgreSQL database management system (DBMS). CONCLUSION: We developed SHiNeMaS, a web tool database, dedicated to the management of the history of seed lots and related data like phenotyping, environmental information and cultural practices. SHiNeMaS has been used in production in our laboratory for 5 years and farmers' organizations facilitators manage their own information in the system.

7.
Front Plant Sci ; 8: 1843, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184557

RESUMO

The high resolution integration of bread wheat genetic and genomic resources accumulated during the last decades offers the opportunity to unveil candidate genes driving major agronomical traits to an unprecedented scale. We combined 27 public quantitative genetic studies and four genetic maps to deliver an exhaustive consensus map consisting of 140,315 molecular markers hosting 221, 73, and 82 Quantitative Trait Loci (QTL) for respectively yield, baking quality, and grain protein content (GPC) related traits. Projection of the consensus genetic map and associated QTLs onto the wheat syntenome made of 99,386 genes ordered on the 21 chromosomes delivered a complete and non-redundant repertoire of 18, 8, 6 metaQTLs for respectively yield, baking quality and GPC, altogether associated to 15,772 genes (delivering 28,630 SNP-based makers) including 37 major candidates. Overall, this study illustrates a translational research approach in transferring information gained from grass relatives to dissect the genomic regions hosting major loci governing key agronomical traits in bread wheat, their flanking markers and associated candidate genes to be now considered as a key resource for breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA