Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(18): 4367-4380, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34091984

RESUMO

Dryland vegetation productivity is strongly modulated by water availability. As precipitation patterns and variability are altered by climate change, there is a pressing need to better understand vegetation responses to precipitation variability in these ecologically fragile regions. Here we present a global analysis of dryland sensitivity to annual precipitation variations using long-term records of normalized difference vegetation index (NDVI). We show that while precipitation explains 66% of spatial gradients in NDVI across dryland regions, precipitation only accounts for <26% of temporal NDVI variability over most (>75%) dryland regions. We observed this weaker temporal relative to spatial relationship between NDVI and precipitation across all global drylands. We confirmed this result using three alternative water availability metrics that account for water loss to evaporation, and growing season and precipitation timing. This suggests that predicting vegetation responses to future rainfall using space-for-time substitution will strongly overestimate precipitation control on interannual variability in aboveground growth. We explore multiple mechanisms to explain the discrepancy between spatial and temporal responses and find contributions from multiple factors including local-scale vegetation characteristics, climate and soil properties. Earth system models (ESMs) from the latest Coupled Model Intercomparison Project overestimate the observed vegetation sensitivity to precipitation variability up to threefold, particularly during dry years. Given projections of increasing meteorological drought, ESMs are likely to overestimate the impacts of future drought on dryland vegetation with observations suggesting that dryland vegetation is more resistant to annual precipitation variations than ESMs project.


Assuntos
Mudança Climática , Secas , Ecossistema , Estações do Ano , Solo , Água
2.
Sci Total Environ ; 831: 154885, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35358519

RESUMO

Climate change has driven an increase in the frequency and severity of fires in Eurasian boreal forests. A growing number of field studies have linked the change in fire regime to post-fire recruitment failure and permanent forest loss. In this study we used four burned area and two forest loss datasets to calculate the landscape-scale fire return interval (FRI) and associated risk of permanent forest loss. We then used machine learning to predict how the FRI will change under a high emissions scenario (SSP3-7.0) by the end of the century. We found that there are currently 133,000 km2 forest at high, or extreme, risk of fire-induced forest loss, with a further 3 M km2 at risk by the end of the century. This has the potential to degrade or destroy some of the largest remaining intact forests in the world, negatively impact the health and economic wellbeing of people living in the region, as well as accelerate global climate change.


Assuntos
Queimaduras , Incêndios , Mudança Climática , Florestas , Humanos , Taiga , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA