Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(39): 11845-11859, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36121768

RESUMO

We report the synthesis of a new conjugated polymer bearing crown ether moieties, poly[(N(1-aza-[18]crown-6)carbamido)thiophene-2,5-diyl-alt-1,4-phenylene] (BG2). In water, BG2 forms a dispersion with a slightly cloudy appearance. We have studied the effect of adding surfactants, with different polar head groups, on these polymer-polymer aggregates. Special attention is given to the system with the anionic surfactant, sodium dodecyl sulfate (SDS). The combination of photophysical techniques with electrical conductivity, NMR (1H, 13C, and 27Na), DFT calculations, molecular dynamics simulations, and small-angle neutron scattering (SANS) provides a detailed picture on the behavior of the SDS/BG2 system in aqueous solution and in thin films. NMR, electric conductivity, and DFT results suggest that hydrophilic interactions occur between the polar headgroup of the surfactant (OSO3- Na+) and the aza-[18]-crown-6 moiety. DFT calculations confirmed the capability of BG2 to form stable complexes with the Na+ cations, where the cation can be either inside the azacrown cavity or sandwiched between the cavity and the polymer chain, which seem to determine the position of the surfactant hydrocarbon chain and, therefore, be responsible for the disruption of the BG2 aggregates and subsequent increase in the photoluminescence quantum yields. SANS measurements, made with hydrogenated and deuterated SDS in D2O, clearly show how micron-sized aggregates of BG2 are broken down by SDS and then how BG2 becomes preferentially incorporated within joint colloidal particles of BG2 and SDS with increasing [SDS]/[BG2] molar ratio.

2.
J Fluoresc ; 31(5): 1363-1369, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34152520

RESUMO

Amino-acyl-quinoxalinone yellow dyes are cyclised analogues of the yellow azomethine dyes developed for, and still used in, silver halide colour photography. Unlike image azomethine dyes, which are rapidly deactivated in their excited states by torsion about the azomethine bond, amino-acyl-quinoxalinone dyes have an interesting photophysics because torsion is not possible due to their cyclised structure. We report results from studies on singlet and triplet state properties, and singlet oxygen yields, of the yellow dye, 7-diethylamino-3-(2,2-dimethyl-propionyl)-5-methyl-1-phenyl-1H-quinoxalin-2-one, in polar and nonpolar solvents. The dye photophysics is characterised by a weak fluorescence, with a solvent dependent emission yield (ΦF ≈ 0.002-0.004), and short singlet state lifetime (τexpt ≈ 20-50 ps), both increasing by a factor of ≈2 in going from polar acetonitrile to non-polar dioxane as solvent. DFT ZINDO calculations show a transition involving significant electron transfer from the diethyl-amino group into the carbonyl region of the molecule. In solution, in the presence of oxygen, the triplet state decays almost exclusively by oxygen quenching, and singlet oxygen is produced in high yield (Φ∆ ≈ 0.5-0.55). The triplet state absorbs across the 450-750 nm region with maxima around 480 and 650 nm, and moderate molar absorption coefficients (ca. 6000-8000 M-1 cm-1). In a glass at 77 K, triplet decay gives a red phosphorescence, with λmax ≈ 640-650 nm, and a ≈ 0.25 s lifetime. If singlet oxygen yields are a good indication of triplet yields, then internal conversion and intersystem crossing occur with roughly equal efficiency.

3.
Bull Environ Contam Toxicol ; 107(1): 131-139, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33847799

RESUMO

The large-scale use of pesticides is one of the main causes of the dramatic degradation of our environment. Pesticides such as imidacloprid (IMID) have been linked to declines in bee health and toxicity to other beneficial insects. They pose a threat to human health due to their persistence in the environment and accumulation in the food chain. Therefore, it is essential to test possible environmentally-friendly solutions for their elimination. The present study evaluates the efficiency of microalgae Nannochloropsis sp. for the removal of IMID from synthetic wastewater. The influence of aeration, light, and the presence of UV radiation on the degradation of IMID were factors considered in the study. A rapid RP-HPLC method was developed and validated for the analysis and quantification of IMID in the context of bioremediation with microalgae. Nannochloropsis sp. removed 4.39 µg mL-1 from an initial content of 9.59 µg mL-1 (reaching approximately 50%) of IMID in the first 20 h. This study demonstrated that the removal of IMID by the marine microalgae Nannochloropsis sp. is both effective and light-dependent.


Assuntos
Microalgas , Estramenópilas , Animais , Abelhas , Cromatografia Líquida de Alta Pressão , Neonicotinoides , Nitrocompostos , Águas Residuárias , Água
4.
Photochem Photobiol Sci ; 19(11): 1522-1537, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32966544

RESUMO

The photophysical properties of Eu3+ and Tb3+ complexes of DOTAGA and DO3A-monoamide conjugates of the Pittsburgh compound B (PiB) chromophore, prepared using linkers of different lengths and flexibilities, and which form stable negatively charged (LnL1), and uncharged (LnL2) complexes, respectively, were studied as potential probes for optical detection of amyloid aggregates. The phenylbenzothiazole (PiB) moiety absorbs light at wavelengths longer than 330 nm with a high molar absorption coefficient in both probes, and acts as an antenna in these systems. The presence of the luminescent Ln3+ ion quenches the excited states of PiB through an energy transfer process from the triplet state of PiB to the metal centre, and structured emission is seen from Eu3+ and Tb3+. The luminescence study indicates the presence of a 5D4 → T1 back transfer process in the Tb3+ complexes. It also provides insights on structural properties of the Eu3+ complexes, such as the high symmetry environment of the Eu3+ ion in a single macrocyclic conformation and the presence of one water molecule in its inner coordination sphere. The overall quantum yield of luminescence of EuL1 is higher than for EuL2. However, their low values reflect the low overall sensitization efficiency of the energy transfer process, which is a consequence of the large distances between the metal center and the antenna, especially in the EuL2 complex. DFT calculations confirmed that the most stable conformation of the Eu3+ complexes involves a combination of a square antiprismatic (SAP) geometry of the chelate and an extended conformation of the linker. The large calculated average distances between the metal center and the antenna point to the predominance of the Förster energy transfer mechanism, especially for EuL2. This study provides insights into the behavior of amyloid-targeted Ln3+ complexes as optical probes, and contributes towards their rational design.


Assuntos
Peptídeos beta-Amiloides/química , Compostos de Anilina/química , Quelantes/química , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/química , Medições Luminescentes , Agregados Proteicos , Tiazóis/química , Teoria da Densidade Funcional , Humanos , Estrutura Molecular , Imagem Óptica , Processos Fotoquímicos
5.
Molecules ; 25(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785138

RESUMO

Pharmaceuticals and their metabolites are released into the environment by domestic, hospital, and pharmaceutical industry wastewaters. Conventional wastewater treatment technology does not guarantee effluents of high quality, and apparently clean water may be loaded with pollutants. In this study, we assess the performance and efficiency of free and immobilised cells of microalgae Nannochloropsis sp. in removing four pharmaceuticals, chosen for their occurrence or persistence in the environment. These are paracetamol, ibuprofen, olanzapine and simvastatin. The results showed that free microalgae cells remain alive for a longer time than the immobilised ones, suggesting the inhibition of cell proliferation by the polymeric matrix polyvinyl alcohol. Both cells, free and immobilised, respond differently to each pharmaceutical. The removal of paracetamol and ibuprofen by Nannochloropsis sp., after 24 h of culture, was significantly higher in immobilised cells. Free cells removed a significantly higher concentration of olanzapine than immobilised ones, suggesting a higher affinity to this molecule than to paracetamol and ibuprofen. The results demonstrate the effectiveness of Nannochloropsis sp. free cells for removing olanzapine and Nannochloropsis sp. immobilised cells for removing paracetamol and ibuprofen.


Assuntos
Biodegradação Ambiental , Microalgas/metabolismo , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/metabolismo , Acetaminofen/metabolismo , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Disruptores Endócrinos/metabolismo , Ibuprofeno/metabolismo , Microalgas/química , Microalgas/crescimento & desenvolvimento , Preparações Farmacêuticas/química , Álcool de Polivinil/química , Sinvastatina/metabolismo , Poluentes Químicos da Água/química
6.
Langmuir ; 33(46): 13350-13363, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29112441

RESUMO

The modulation of conjugated polyelectrolyte fluorescence response by nonionic surfactants is dependent on the structures of the surfactant and polymer, polymer average molecular weight, and polyelectrolyte-surfactant interactions. In this paper, we study the effect of nonionic n-alkyl polyoxyethylene surfactants (CiEj) with different alkyl chain lengths (CiE5 with i = 6, 8, 10, and 12) and number of oxyethylene groups (C12Ej with j = 5, 7, and 9) on the photophysics and ionic conductivity of poly{[9,9-bis(6'-N,N,N-trimethylammonium)-hexyl]-2,7-fluorene-alt-1,4-phenylene}bromide (HTMA-PFP) in dimethyl sulfoxide-water 4% (v/v). Molecular dynamics simulations show that HTMA-PFP chains tend to approach as the simulation evolves. However, the minimum distance between the polymer centers of mass increases upon addition of the surfactant and grows with both the surfactant alkyl chain length and the number of oxyethylene groups, although there are no specific polymer-surfactant interactions. A significant increase in the polymer emission intensity has been observed at surfactant concentrations around their critical micelle concentrations (cmcs), which is attributed to polymer aggregate disruption. However, an increase in the solution conductivity for concentrations above the C12E5 cmc has only been observed for the HTMA-PFP/C12E5 system. The enhancement of fluorescence emission intensity and conductivity upon surfactant addition increases with polymer average molecular weights and seems to be controlled by the polymer-surfactant proximity, which is maximum for C10E5 and C12E5.

7.
Photochem Photobiol Sci ; 16(6): 935-945, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28443909

RESUMO

We report a comparative study on the photodegradation of the widely used benzodiazepine psychoactive drug alprazolam (8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine, ALP) using direct photolysis, and titanium dioxide photocatalyzed reaction. Titanium dioxide photocatalysts were prepared as nanoparticles by acidic sol-gel methods, calcined at two different temperatures, and their behavior compared with P25 (Degussa type) TiO2. Efficient photodegradation was observed in the photocatalytic process, with over 90% degradation after 90 minutes under optimized conditions. Triazolaminoquinoline, 5-chloro-(5-methyl-4H-1,2,4-triazol-4-yl)benzophenone, triazolbenzophenone, and α-hydroxyalprazolam were identified as the degradation products by fluorescence spectroscopy and HPLC-MS. A comparison with the literature suggests that 8H-alprazolam may also be formed. Good mineralization was observed with TiO2 photocatalysts. ALP photodegradation with TiO2 follows pseudo-first order kinetics, with rates depending on the photocatalyst used. The effects of the quantity of the photocatalyst and concentration of alprazolam were studied.

8.
Sci Prog ; 100(2): 212-230, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28693679

RESUMO

To celebrate the centenary of Science Progress we offer a short survey of the progress made over the past one hundred years in the research and application of photoinduced charge transfer. After a brief historical overview and introduction to photoinduced charge transfer, we discuss developments in the theory and practice of photography, photovoltaics, photocatalysis, fluorescent probes and chemosensing.

9.
Sensors (Basel) ; 17(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099776

RESUMO

Conjugated polymers (CPs) have proved to be promising chemosensory materials for detecting nitroaromatic explosives vapors, as they quickly convert a chemical interaction into an easily-measured high-sensitivity optical output. The nitroaromatic analytes are strongly electron-deficient, whereas the conjugated polymer sensing materials are electron-rich. As a result, the photoexcitation of the CP is followed by electron transfer to the nitroaromatic analyte, resulting in a quenching of the light-emission from the conjugated polymer. The best CP in our studies was found to be poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2). It is photostable, has a good absorption between 400 and 450 nm, and a strong and structured fluorescence around 550 nm. Our studies indicate up to 96% quenching of light-emission, accompanied by a marked decrease in the fluorescence lifetime, upon exposure of the films of F8T2 in ethyl cellulose to nitrobenzene (NB) and 1,3-dinitrobenzene (DNB) vapors at room temperature. The effects of the polymeric matrix, plasticizer, and temperature have been studied, and the morphology of films determined by scanning electron microscopy (SEM) and confocal fluorescence microscopy. We have used ink jet printing to produce sensor films containing both sensor element and a fluorescence reference. In addition, a high dynamic range, intensity-based fluorometer, using a laser diode and a filtered photodiode was developed for use with this system.

10.
Phys Chem Chem Phys ; 18(25): 16629-40, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26817700

RESUMO

We have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(iii) and Zn(ii) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by DFT calculations and molecular dynamics (MD) simulations. Under appropriate conditions, complexes between 8-HQS and metal ions form rapidly, and have similar electronic, spectroscopic and photophysical properties to the corresponding metal quinolates, such as Alq3. These interact with the cationic surfactants, leading to marked increases in fluorescence intensity. However, significant differences are seen in the behavior of the two metal ions. With aluminium, a stable [Al(8-QS)3](3-) anion is formed, and interacts, predominantly through electrostatic interactions, with the surfactant, without disrupting the metal ion coordination sphere. In contrast, with Zn(ii), there is a competition between the metal ion and surfactants in the interaction with 8-HQS, although the [Zn(8-QS)2(H2O)2](2-) species is stable at appropriate pH and surfactant concentration. The studies are extended to systems with the conjugated polyelectrolyte (CPE) poly-(9,9-bis(6-N,N,N-trimethylammonium)hexyl)-fluorene-phenylene bromide (HTMA-PFP), which has a similar alkylammonium chain to the surfactants. Mixing metal salt, 8-HQS and HTMA-PFP in the presence of a nonionic surfactant leads to the formation of a metal complex/CPE supramolecular assembly between the conjugated polyelectrolyte and the metal/8-HQS complex, as demonstrated by electronic energy transfer. The potential of these systems in sensing, light harvesting, and electron injection/transport layers in organic semiconductor devices is discussed.

11.
Sci Prog ; 98(Pt 2): 145-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26288917

RESUMO

Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production--some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals.


Assuntos
Biodegradação Ambiental , Fontes de Energia Bioelétrica/microbiologia , Biocombustíveis/microbiologia , Conservação dos Recursos Naturais/métodos , Cianobactérias/metabolismo , Microalgas/metabolismo
12.
Environ Monit Assess ; 187(11): 703, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26497563

RESUMO

Dissolved organic carbon (DOC) is frequently used as a diagnostic parameter for the identification of environmental contamination in aqueous systems. Since this organic matter is evolving and decaying over time. If samples are collected under environmental conditions, some sample stabilization process is needed until the corresponding analysis can be made. This may affect the analysis results. This problem can be avoided using the direct determination of DOC. We report a study using in situ synchronous fluorescence spectra, with independent component analysis to retrieve relevant major spectral contributions and their respective component contributions, for the direct determination of DOC. Fluorescence spectroscopy is a very powerful and sensitive technique to evaluate vestigial organic matter dissolved in water and is thus suited for the analytical task of direct monitoring of dissolved organic matter in water, thus avoiding the need for the stabilization step. We also report the development of an accurate calibration model for dissolved organic carbon determinations using environmental samples of humic and fulvic acids. The method described opens the opportunity for a fast, in locus, DOC estimation in environmental or other field studies using a portable fluorescence spectrometer. This combines the benefits of the use of fresh samples, without the need of stabilizers, and also allows the interpretation of various additional spectral contributions based on their respective estimated properties. We show how independent component analysis may be used to describe tyrosine, tryptophan, humic acid and fulvic acid spectra and, thus, to retrieve the respective individual component contribution to the DOC.


Assuntos
Monitoramento Ambiental/métodos , Calibragem , Carbono/análise , Fluorescência , Substâncias Húmicas/análise , Modelos Teóricos , Análise Multivariada , Espectrometria de Fluorescência
13.
Langmuir ; 29(32): 10047-58, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23822142

RESUMO

The amphiphilic properties of conjugated oligoelectrolytes (COE) and their sensitivity to the polarity of their microenvironment lead to interesting aggregation behavior, in particular in their interaction with surfactants. Photoluminescence (PL) spectroscopy, liquid-phase atomic force microscopy, small-angle neutron scattering, small-angle X-ray scattering, and grazing-incidence X-ray diffraction were used to examine interactions between cationic p-phenylene vinylene based oligoelectrolytes and surfactants. These techniques indicate the formation of COE/surfactant aggregates in aqueous solution, and changes in the photophysical properties are observed when compared to pure aqueous solutions. We evaluate the effect of the charge of the surfactant polar headgroup, the size of the hydrophobic chain, and the role of counterions. At low COE concentrations (micromolar), it was found that these COEs display larger emission quantum efficiencies upon incorporation into micelles, along with marked blue-shifts of the PL spectra. This effect is most pronounced in the series of anionic surfactants, and the degree of blue shifts as a function of surfactant charge is as follows: cationic < nonionic < anionic surfactants. In anionic surfactants, such as sodium dodecyl sulfate (SDS), the PL spectra show vibronic resolution above the critical micelle concentration of the surfactant, suggesting more rigid structures. Scattering data indicate that in aqueous solutions, trimers appear as essentially 3-dimensional particles, while tetra- and pentamers form larger, cylindrical particles. When the molar ratio of nonionic C12E5 surfactant to 1,4-bis(4-{N,N-bis-[(N,N,N-trimethylammonium)hexyl]amino}-styryl)benzene tetraiodide (DSBNI) is close to one, the size of the formed DSBNI-C12E5 particles corresponds to the full coverage of individual oligomers. When these particles are transferred into thin films, they organize into a cubic in-plane pattern. If anionic SDS is added, the formed DSBNI-SDS particles are larger than expected for full surfactant coverage, and particles may thus contain several oligomers. This tendency is attributed to the merging of DSBNI oligomers due to the charge screening and, thus, reduced water solubility.


Assuntos
Polivinil/química , Estirenos/química , Tensoativos/química , Eletrólitos/química , Estrutura Molecular
14.
Langmuir ; 29(47): 14429-37, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24175706

RESUMO

Complexation of isotactic, syndiotactic, and atactic poly(methacrylic acid), PMA, with trivalent lanthanide ions has been studied in water at a degree of neutralization 0.5. Metal ion binding is shown by quenching of cerium(III) fluorescence, enhancement of Tb(III) luminescence, and lanthanide-induced line broadening in the PMA (1)H NMR spectra. Comparison with lanthanide-acetate complexation suggests carboxylate binds in a bidentate fashion, while Ce(III) luminescence quenching suggests an ≈3:1 carboxylate:metal ion stoichiometry, corresponding to charge neutralization. The presence of both free and bound Ce(III) cations in PMA solutions is confirmed from luminescence decays. Studies of Tb(3+) luminescence lifetime in H2O and D2O solutions show complexation is accompanied by loss of 5-6 water molecules, indicating that each bidentate carboxylate replaces two coordinated water molecules. The behavior depends on pH and polyelectrolyte stereoregularity, and stronger binding is observed with isotactic polyelectrolyte. Binding of cetylpyridinium chloride, CPC, in these systems is studied by luminescence, NMR, and potentiometry. NMR and Tb(3+) luminescence lifetime studies show the strongest binding with the isotactic polymer. Binding of surfactant to poly(methacrylate) in the presence of lanthanides is noncooperative, i.e., it binds to the free sites; binding isotherms in the presence of lanthanides are shifted to higher free surfactant concentrations, compared with sodium ions, have lower slopes and show a clear two-step binding mechanism. While CPC readily replaces the Na(+) ions of poly(methacrylate) and binds very strongly (low critical association concentrations), exchange is much more difficult with the strongly bound trivalent lanthanide ions. Effects of tacticity are seen, with surfactant interacting most strongly with isotactic chains in the initial stages of binding, while in the final stages of binding the interaction is strongest with atactic poly(methacrylate).


Assuntos
Cetilpiridínio/química , Elementos da Série dos Lantanídeos/química , Luminescência , Ácidos Polimetacrílicos/química , Termodinâmica , Sítios de Ligação , Concentração de Íons de Hidrogênio , Íons/química , Espectroscopia de Ressonância Magnética , Estereoisomerismo
15.
Photochem Photobiol Sci ; 12(9): 1606-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23708826

RESUMO

The fluorescence quenching of protonated ß-carbolines has been investigated in acidic aqueous solutions and in w/o microemulsions using I(-), Br(-), Cu(2+), SCN(-), and Pb(2+) as quenchers. It was found that fluorescence quenching by these compounds is much more efficient in water than in microemulsions since quenching in microemulsions depends on the simultaneous occupancy of the water droplets by both fluorophore and quencher. Linear Stern-Volmer plots were obtained in all cases, leading to quenching rate constants of ca. 10(8)-10(10) M(-1) s(-1) in water and ca. 10(7)-10(8) M(-1) s(-1) in microemulsions. In the case of quenching by SCN(-), ns flash photolysis studies indicate formation of (SCN)2(˙-) showing that at least part of the quenching process involves an electron transfer mechanism. This indicates that the singlet excited states of the protonated ß-carbolines can act as relatively strong oxidants (E° > 1.6 V), capable of oxidizing many species, including the biologically relevant DNA base guanine. The observation of the (SCN)2(˙-) transient in microemulsions demonstrates that it is possible to have the protonated ß-carboline and at least two thiocyanate ions in the same water pool.


Assuntos
Carbolinas/química , Emulsões/química , Água/química , Cobre/química , Transporte de Elétrons , Elétrons , Fluorescência , Corantes Fluorescentes/química , Halogênios/química , Chumbo/química , Prótons , Espectrometria de Fluorescência , Tiocianatos/química
16.
Macromol Rapid Commun ; 34(9): 717-22, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23364998

RESUMO

The cationic, all-conjugated AB diblock copolymer poly[9,9-bis(2-ethylhexyl)fluorene]-b-poly[3-(6-trimethylammoniumhexyl) thiophene] bromide (PF2/6-b-P3TMAHT) shows dual fluorescence from the poly(fluorene) (PF) and poly(thiophene) (PT) blocks. A comparison of fluorescence quenching of the cationic PT block fluorescence with unquenched PF block provides a sensitive ratiometric method for anion sensing. The application to analysis of halide ions, single- and double-stranded DNA is demonstrated. High selectivity is observed with halide ions, with the strongest quenching being seen with iodide. The quenching with DNA can be used for nucleic acid quantification at sub-µM concentrations.


Assuntos
Fluorenos/química , Polímeros/química , Tiofenos/química , Ânions/química , Cátions/química , DNA/química , DNA de Cadeia Simples/química , Fluorescência , Tensoativos/química
17.
Langmuir ; 28(1): 168-77, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22107111

RESUMO

The interaction between sodium octanoate, decanoate, and dodecanoate and aluminum(III) and chromium(III) has been studied in water at natural pH values, starting well below the surfactant critical micelle concentration, using electrical conductivity, turbidity, and potentiometric measurements. With decanoate or dodecanoate, maximum interaction occurs at 3:1 stoichiometry, corresponding to charge neutralization. Although the solutions become turbid with both metal ions, indicating phase separation, differences are observed and attributed to the fact that aluminum(III) is relatively labile to substitution and rapidly replaces its water ligands, whereas chromium(III) is substitution inert. This shows up in well-defined floc formation with Al(3+), whereas Cr(3+) suspensions do not precipitate, probably because that replacement of coordinated water by carboxylate ligands is impeded. This can be overcome by increasing temperature, and differences in the thermal behavior with Al(3+) and Cr(3+) are suggested to be due to increased involvement of substitution reactions in the latter case. The effect of octanoate on the trivalent metal ions is less clear, and with Cr(3+) interaction only occurs when the carboxylate is in excess. Hydrophobic interactions between alkyl chains play a major role in driving phase separation. At high surfactant concentrations, the solid phases do not dissolve, in contrast to what is observed with the corresponding alkylsulfates. This has implications for use of these systems in metal separation through froth flotation. The concentration of metal ions in supernatant solution has been determined for sodium dodecanoate and sodium dodecylsulfate with Al(3+) and Cr(3+) over the whole surfactant concentration range by inductively coupled plasma-mass spectrometry (ICP-MS). From this, association constants have been determined and are found to be larger for the carboxylate than the alkylsulfate, in agreement with the greater Lewis basicity of the -CO(2)(-) group.


Assuntos
Alumínio/química , Ácidos Carboxílicos/química , Cromo/química , Metais/química , Água/química , Espectrometria de Massas , Soluções , Tensoativos/química , Temperatura
18.
Langmuir ; 28(33): 12348-56, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22839776

RESUMO

The absorption and photoluminescence spectra of the cationic conjugated polyelectrolyte poly[3-(6-trimethylammoniumhexyl)thiophene] (P3TMAHT) were observed to be dramatically altered in the presence of anionic surfactants due to self-assembly through ionic complex formation. Small-angle neutron scattering (SANS), UV/vis, and photoluminescence spectroscopy were used to probe the relationship between the supramolecular complex organization and the photophysical response of P3TMAHT in the presence of industrially important anionic surfactants. Subtle differences in the surfactant mole fraction and chemical structure (e.g., chain length, headgroup charge density, perfluorination) result in marked variations in the range and type of complexes formed, which can be directly correlated to a unique colorimetric and fluorimetric fingerprint. Our results show that P3TMAHT has potential as an optical sensor for anionic surfactants capable of selectively identifying distinct structural subgroups through dual mode detection.


Assuntos
Fenômenos Ópticos , Transição de Fase , Polímeros/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Tiofenos/química , Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Modelos Moleculares , Conformação Molecular
19.
Phys Chem Chem Phys ; 14(20): 7517-27, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22513819

RESUMO

The interaction of sodium octanoate, decanoate or dodecanoate with calcium(ii) in aqueous solutions has been studied using turbidity, conductivity and potentiometric measurements. These show a marked alkyl chain length dependence on the behaviour. At the calcium concentration used (1.0 mM), there is little interaction with the octanoate, the decanoate shows initially formation of a 1:1 complex, followed by precipitation, while the dodecanoate precipitates at low surfactant concentrations. The solid calcium carboxylates were prepared, and show lamellar, bilayer structures with planes of calcium(II) ions coordinated to carboxylate groups through bidentate chelate linkages. Thermogravimetry and elemental analyses indicate the presence of coordinated water with the calcium decanoate but not with longer chain carboxylates. The results of both the solution and solid state studies suggest that precipitation of long-chain carboxylates depends on a balance between hydration effects and hydrophobic (largely van der Waals') interactions. Electrostatic effects make little energetic contribution but play the important structural role of ordering the carboxylate anions before precipitation. Differences are observed in the interactions between calcium(II) and long chain alkylcarboxylates and alkylsulfates, and are interpreted in terms of stronger binding to the metal of the carboxylate group. A general mechanism is proposed for calcium carboxylate precipitation from aqueous solution based on this and previous studies.

20.
Phys Chem Chem Phys ; 14(22): 7950-3, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22569828

RESUMO

Much stronger binding is seen in aqueous solutions between the anionic polyelectrolyte potassium poly(vinyl sulfate) and the substitution labile aluminium(III) than with the kinetically inert chromium(III). This strongly supports the idea that entropy driven water loss from the hydration sphere of the metal ion plays a major role in driving binding of the trivalent metal ion to the polyelectrolyte.


Assuntos
Alumínio/química , Cromo/química , Polivinil/química , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA