Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nat Immunol ; 17(5): 495-504, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27019227

RESUMO

Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.


Assuntos
DNA Polimerase I/metabolismo , DNA/biossíntese , Interferon Tipo I/metabolismo , RNA/biossíntese , Sequência de Bases , Células Cultivadas , Citosol/metabolismo , DNA/genética , DNA Polimerase I/genética , Saúde da Família , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Masculino , Microscopia Confocal , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Transtornos da Pigmentação/genética , Transtornos da Pigmentação/metabolismo , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Nature ; 553(7687): 208-211, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323293

RESUMO

Inflammatory diseases of the gastrointestinal tract are frequently associated with dysbiosis, characterized by changes in gut microbial communities that include an expansion of facultative anaerobic bacteria of the Enterobacteriaceae family (phylum Proteobacteria). Here we show that a dysbiotic expansion of Enterobacteriaceae during gut inflammation could be prevented by tungstate treatment, which selectively inhibited molybdenum-cofactor-dependent microbial respiratory pathways that are operational only during episodes of inflammation. By contrast, we found that tungstate treatment caused minimal changes in the microbiota composition under homeostatic conditions. Notably, tungstate-mediated microbiota editing reduced the severity of intestinal inflammation in mouse models of colitis. We conclude that precision editing of the microbiota composition by tungstate treatment ameliorates the adverse effects of dysbiosis in the inflamed gut.


Assuntos
Colite/tratamento farmacológico , Colite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Anaerobiose/efeitos dos fármacos , Animais , Respiração Celular/efeitos dos fármacos , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Molibdênio/metabolismo , Compostos de Tungstênio/farmacologia , Compostos de Tungstênio/uso terapêutico
3.
J Immunol ; 206(5): 936-940, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33504619

RESUMO

Dysregulated IL-17 expression is central to the pathogenesis of several inflammatory disorders, including ulcerative colitis. We have shown earlier that SUMOylation of ROR-γt, the transcription factor for IL-17, regulates colonic inflammation. In this study, we show that the expression of Ubc9, the E2 enzyme that targets ROR-γt for SUMOylation, is significantly reduced in the colonic mucosa of ulcerative colitis patients. Mechanistically, we demonstrate that hypoxia-inducible factor 1α (HIF-1α) binds to a CpG island within the Ubc9 gene promoter, resulting in its hypermethylation and reduced Ubc9 expression. CRISPR-Cas9-mediated inhibition of HIF-1α normalized Ubc9 and attenuated IL-17 expression in Th17 cells and reduced diseases severity in Rag1 -/- mice upon adoptive transfer. Collectively, our study reveals a novel epigenetic mechanism of regulation of ROR-γt that could be exploited in inflammatory diseases.


Assuntos
Colite Ulcerativa/genética , Metilação de DNA/genética , Hipóxia/genética , Interleucina-17/genética , Regiões Promotoras Genéticas/genética , Enzimas de Conjugação de Ubiquitina/genética , Animais , Colite Ulcerativa/patologia , Colo/patologia , Humanos , Hipóxia/patologia , Inflamação/genética , Inflamação/patologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Th17
4.
Proc Natl Acad Sci U S A ; 117(12): 6559-6570, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156735

RESUMO

Secretagogin (SCGN) is a hexa-EF-hand protein that is highly expressed in the pancreas, brain, and gastrointestinal tract. SCGN is known to modulate regulated exocytosis in multiple cell lines and tissues; however, its exact functions and underlying mechanisms remain unclear. Here, we report that SCGN interacts with the plasma membrane SNARE SNAP-25, but not the assembled SNARE complex, in a Ca2+-dependent manner. The crystal structure of SCGN in complex with a SNAP-25 fragment reveals that SNAP-25 adopts a helical structure and binds to EF-hands 5 and 6 of SCGN. SCGN strongly inhibits SNARE-mediated vesicle fusion in vitro by binding to SNAP-25. SCGN promotes the plasma membrane localization of SNAP-25, but not Syntaxin-1a, in SCGN-expressing cells. Finally, SCGN controls neuronal growth and brain development in zebrafish, likely via interacting with SNAP-25 or its close homolog, SNAP-23. Our results thus provide insights into the regulation of SNAREs and suggest that aberrant synapse functions underlie multiple neurological disorders caused by SCGN deficiency.


Assuntos
Exocitose , Secretagoginas/química , Secretagoginas/metabolismo , Animais , Sítios de Ligação , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação , Ligação Proteica , Conformação Proteica , Secretagoginas/genética , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Peixe-Zebra
5.
Gut ; 71(7): 1332-1339, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34429385

RESUMO

OBJECTIVE: Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. Obesity is a well-established risk factor for CRC, and fetal or developmental origins of obesity may underlie its effect on cancer in adulthood. We examined associations of maternal obesity, pregnancy weight gain, and birth weight and CRC in adult offspring. DESIGN: The Child Health and Development Studies is a prospective cohort of women receiving prenatal care between 1959 and 1966 in Oakland, California (N=18 751 live births among 14 507 mothers). Clinical information was abstracted from mothers' medical records 6 months prior to pregnancy through delivery. Diagnoses of CRC in adult (age ≥18 years) offspring were ascertained through 2019 by linkage with the California Cancer Registry. We used Cox proportional hazards models to estimate adjusted HR (aHR); we examined effect measure modification using single-referent models to estimate the relative excess risk due to interaction (RERI). RESULTS: 68 offspring were diagnosed with CRC over 738 048 person-years of follow-up, and half (48.5%) were diagnosed younger than age 50 years. Maternal obesity (≥30 kg/m2) increased the risk of CRC in offspring (aHR 2.51, 95% CI 1.05 to 6.02). Total weight gain modified the association of rate of early weight gain (RERI -4.37, 95% CI -9.49 to 0.76), suggesting discordant growth from early to late pregnancy increases risk. There was an elevated association with birth weight (≥4000 g: aHR 1.95, 95% CI 0.8 to 4.38). CONCLUSION: Our results suggest that in utero events are important risk factors for CRC and may contribute to increasing incidence rates in younger adults.


Assuntos
Neoplasias Colorretais , Ganho de Peso na Gestação , Obesidade Materna , Adolescente , Adulto , Peso ao Nascer , Índice de Massa Corporal , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Feminino , Humanos , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/epidemiologia , Gravidez , Estudos Prospectivos , Fatores de Risco , Aumento de Peso
6.
Am J Hum Genet ; 104(5): 957-967, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006512

RESUMO

Replicating the human genome efficiently and accurately is a daunting challenge involving the duplication of upward of three billion base pairs. At the core of the complex machinery that achieves this task are three members of the B family of DNA polymerases: DNA polymerases α, δ, and ε. Collectively these multimeric polymerases ensure DNA replication proceeds at optimal rates approaching 2 × 103 nucleotides/min with an error rate of less than one per million nucleotides polymerized. The majority of DNA replication of undamaged DNA is conducted by DNA polymerases δ and ε. The DNA polymerase α-primase complex performs limited synthesis to initiate the replication process, along with Okazaki-fragment synthesis on the discontinuous lagging strand. An increasing number of human disorders caused by defects in different components of the DNA-replication apparatus have been described to date. These are clinically diverse and involve a wide range of features, including variable combinations of growth delay, immunodeficiency, endocrine insufficiencies, lipodystrophy, and cancer predisposition. Here, by using various complementary approaches, including classical linkage analysis, targeted next-generation sequencing, and whole-exome sequencing, we describe distinct missense and splice-impacting mutations in POLA1 in five unrelated families presenting with an X-linked syndrome involving intellectual disability, proportionate short stature, microcephaly, and hypogonadism. POLA1 encodes the p180 catalytic subunit of DNA polymerase α-primase. A range of replicative impairments could be demonstrated in lymphoblastoid cell lines derived from affected individuals. Our findings describe the presentation of pathogenic mutations in a catalytic component of a B family DNA polymerase member, DNA polymerase α.


Assuntos
DNA Polimerase I/genética , DNA Primase/genética , Doenças Genéticas Ligadas ao Cromossomo X/etiologia , Transtornos do Crescimento/etiologia , Hipogonadismo/etiologia , Deficiência Intelectual/etiologia , Microcefalia/etiologia , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Transtornos do Crescimento/patologia , Humanos , Hipogonadismo/patologia , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Pessoa de Meia-Idade , Linhagem , Sequenciamento do Exoma
7.
Clin Gastroenterol Hepatol ; 20(2): 353-361.e3, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359728

RESUMO

BACKGROUND & AIMS: Up to 20% of younger patients (age <50 years) diagnosed with colorectal cancer (CRC) have germline mutations in cancer susceptibility genes. Germline genetic testing may guide clinical management and facilitate earlier intervention in affected relatives. Few studies have characterized differences in genetic testing by race/ethnicity. METHODS: We identified young adults (age 18-49 years) diagnosed with CRC between 2009 and 2017 in 2 health systems in Dallas, TX. We evaluated referral to genetic counseling, attendance at genetic counseling appointments, and receipt of germline genetic testing by race/ethnicity. RESULTS: Of 385 patients with young-onset CRC (median age at diagnosis 44.4 years), 176 (45.7%) were Hispanic, 98 (25.4%) non-Hispanic Black, and 111 (28.8%) non-Hispanic White. Most patients (76.9%) received immunohistochemistry (IHC) for mismatch repair proteins, and there was no difference in receipt of IHC by race/ethnicity. However, a lower proportion of Black patients were referred to genetic counseling (50.0% vs White patients 54.1% vs Hispanic patients 65.9%; P = .02) and attended genetic counseling appointments (61.2% vs 81.7% White patients vs 86.2% Hispanic patients; P < .01). Of 141 patients receiving genetic testing, 38 (27.0%) had a pathogenic or likely pathogenic variant in a cancer susceptibility gene. An additional 33 patients (23.4%) had variants of uncertain significance, of which 84.8% occurred in racial/ethnic minorities. CONCLUSIONS: In a diverse population of patients diagnosed with young-onset CRC, we observed racial/ethnic differences in referral to and receipt of germline genetic testing. Our findings underscore the importance of universal genetic testing to address racial/ethnic disparities in young-onset CRC.


Assuntos
Neoplasias Colorretais , Etnicidade , Adolescente , Adulto , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Etnicidade/genética , Testes Genéticos , Células Germinativas , Hispânico ou Latino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
8.
J Clin Immunol ; 41(2): 285-293, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33392852

RESUMO

POLA1 encodes the catalytic unit of DNA polymerase α, which together with the Primase complex launches the DNA replication process. While complete deficiency of this essential gene is presumed to be lethal, at least two conditions due to partial POLA1 deficiency have been described. The first genetic syndrome to be mapped to POLA1 was X-linked reticulate pigmentary disorder (XLPDR, MIM #301220), a rare syndrome characterized by skin hyperpigmentation, sterile multiorgan inflammation, recurrent infections, and distinct facial features. XLPDR has been shown to be accompanied by profound activation of type I interferon signaling, but unlike other interferonopathies, it is not associated with autoantibodies or classical autoimmunity. Rather, it is accompanied by marked Natural Killer (NK) cell dysfunction, which may explain the recurrent infections seen in this syndrome. To date, all XLPDR cases are caused by the same recurrent intronic mutation, which results in gene missplicing. Several hypomorphic mutations in POLA1, distinct from the XLPDR intronic mutation, have been recently reported and these mutations associate with a separate condition, van Esch-O'Driscoll syndrome (VEODS, MIM #301030). This condition results in growth retardation, microcephaly, hypogonadism, and in some cases, overlapping immunological features to those seen in XLPDR. This review summarizes our current understanding of the clinical manifestations of POLA1 gene mutations with an emphasis on its immunological consequences, as well as recent advances in understanding of its pathophysiologic basis and potential therapeutic options.


Assuntos
DNA Polimerase I/deficiência , DNA Polimerase I/genética , Doenças do Sistema Imunitário/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Animais , Genes Ligados ao Cromossomo X/genética , Humanos , Mutação/genética
9.
Transfus Apher Sci ; 60(6): 103213, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34400095

RESUMO

Autoimmune thrombotic thrombocytopenic purpura (aTTP) is caused by autoantibodies to the von Willebrand Factor cleaving enzyme, ADAMTS13. Despite recent advances in the treatment of acute aTTP, relapse rates remain high. Guidance for the treatment of patients in clinical remission but with persistent severe ADAMTS13 deficiency who fail to respond to rituximab remains unclear. We report a case of a 29-year-old man diagnosed with aTTP at the age of 11. Over a period of 18 years, he had five clinical relapses with persistent severe ADAMTS13 deficiency (<10%) and presence of autoantibodies during clinical remissions despite immunosuppressive therapy with rituximab, bortezomib and azathioprine. While in a clinical remission, he was diagnosed with Crohn's disease and initially treated with adalimumab. When he subsequently developed antibodies to adalimumab, he was transitioned to infliximab. ADAMTS13 activity increased to 24% by 2 months of infliximab induction, and four months later the ADAMTS13 activity improved to 42%. This case demonstrates the importance of managing concurrent inflammatory disorders and suggests that TNF may play a role in autoantibody development and ADAMTS13 depletion.


Assuntos
Proteína ADAMTS13/metabolismo , Infliximab/efeitos adversos , Púrpura Trombocitopênica Trombótica/induzido quimicamente , Púrpura Trombocitopênica Trombótica/genética , Adulto , Humanos , Masculino
10.
Eur Heart J ; 41(9): 1040-1053, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630160

RESUMO

AIMS: Genome-wide association studies have previously identified INSIG2 as a candidate gene for plasma low-density lipoprotein cholesterol (LDL-c). However, we suspect a role for CCDC93 in the same locus because of its involvement in the recycling of the LDL-receptor (LDLR). METHODS AND RESULTS: Characterization of the INSIG2 locus was followed by studies in over 107 000 individuals from the general population, the Copenhagen General Population Study and the Copenhagen City Heart Study, for associations of genetic variants with plasma lipids levels, with risk of myocardial infarction (MI) and with cardiovascular mortality. CCDC93 was furthermore studied in cells and mice. The lead variant of the INSIG2 locus (rs10490626) is not associated with changes in the expression of nearby genes but is a part of a genetic block, which excludes INSIG2. This block includes a coding variant in CCDC93 p.Pro228Leu, which is in strong linkage disequilibrium with rs10490626 (r2 > 0.96). In the general population, separately and combined, CCDC93 p.Pro228Leu is dose-dependently associated with lower LDL-c (P-trend 2.5 × 10-6 to 8.0 × 10-9), with lower risk of MI (P-trend 0.04-0.002) and lower risk of cardiovascular mortality (P-trend 0.005-0.004). These results were validated for LDL-c, risk of both coronary artery disease and MI in meta-analyses including from 194 000 to >700 000 participants. The variant is shown to increase CCDC93 protein stability, while overexpression of human CCDC93 decreases plasma LDL-c in mice. Conversely, CCDC93 ablation reduces LDL uptake as a result of reduced LDLR levels at the cell membrane. CONCLUSION: This study provides evidence that a common variant in CCDC93, encoding a protein involved in recycling of the LDLR, is associated with lower LDL-c levels, lower risk of MI and cardiovascular mortality.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Proteínas de Transporte Vesicular/genética , Animais , LDL-Colesterol/genética , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/prevenção & controle , Receptores de LDL/genética
11.
Traffic ; 19(8): 578-590, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29667289

RESUMO

The tubular endolysosomal network is a quality control system that ensures the proper delivery of internalized receptors to specific subcellular destinations in order to maintain cellular homeostasis. Although retromer was originally described in yeast as a regulator of endosome-to-Golgi receptor recycling, mammalian retromer has emerged as a central player in endosome-to-plasma membrane recycling of a variety of receptors. Over the past decade, information regarding the mechanism by which retromer facilitates receptor trafficking has emerged, as has the identification of numerous retromer-associated molecules including the WASH complex, sorting nexins (SNXs) and TBC1d5. Moreover, the recent demonstration that several SNXs can directly interact with retromer cargo to facilitate endosome-to-Golgi retrieval has provided new insight into how these receptors are trafficked in cells. The mechanism by which SNX17 cargoes are recycled out of the endosomal system was demonstrated to involve a retromer-like complex termed the retriever, which is recruited to WASH positive endosomes through an interaction with the COMMD/CCDC22/CCDC93 (CCC) complex. Lastly, the mechanisms by which bacterial and viral pathogens highjack this complex sorting machinery in order to escape the endolysosomal system or remain hidden within the cells are beginning to emerge. In this review, we will highlight recent studies that have begun to unravel the intricacies by which the retromer and associated molecules contribute to receptor trafficking and how deregulation at this sorting domain can contribute to disease or facilitate pathogen infection.


Assuntos
Endossomos/metabolismo , Endossomos/fisiologia , Transporte Proteico/fisiologia , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Complexo de Golgi/metabolismo , Complexo de Golgi/fisiologia , Humanos , Rede trans-Golgi/metabolismo , Rede trans-Golgi/fisiologia
12.
Circ Res ; 122(12): 1648-1660, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545368

RESUMO

RATIONALE: COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. OBJECTIVE: The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. METHODS AND RESULTS: Using liver-specific Commd1, Commd6, or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. CONCLUSIONS: Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aterosclerose/prevenção & controle , LDL-Colesterol/sangue , Proteínas do Citoesqueleto/metabolismo , Endossomos/metabolismo , Receptores de LDL/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aterosclerose/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Colesterol/análise , Cromatografia Líquida de Alta Pressão , Proteínas do Citoesqueleto/genética , Deleção de Genes , Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Fígado/química , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Transporte Proteico , Triglicerídeos/análise , Proteínas Supressoras de Tumor/metabolismo
13.
J Cell Sci ; 130(14): 2235-2241, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28646090

RESUMO

Proteins of the Wiskott-Aldrich syndrome protein (WASP) family function as nucleation-promoting factors for the ubiquitously expressed Arp2/3 complex, which drives the generation of branched actin filaments. Arp2/3-generated actin regulates diverse cellular processes, including the formation of lamellipodia and filopodia, endocytosis and/or phagocytosis at the plasma membrane, and the generation of cargo-laden vesicles from organelles including the Golgi, endoplasmic reticulum (ER) and the endo-lysosomal network. Recent studies have also identified roles for WASP family members in promoting actin dynamics at the centrosome, influencing nuclear shape and membrane remodeling events leading to the generation of autophagosomes. Interestingly, several WASP family members have also been observed in the nucleus where they directly influence gene expression by serving as molecular platforms for the assembly of epigenetic and transcriptional machinery. In this Cell Science at a Glance article and accompanying poster, we provide an update on the subcellular roles of WHAMM, JMY and WASH (also known as WASHC1), as well as their mechanisms of regulation and emerging functions within the cell.


Assuntos
Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Humanos
14.
Phytother Res ; 33(9): 2192-2212, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31264302

RESUMO

Alcoholic liver disease (ALD), caused by excessive consumption of alcohol, is a major cause of chronic liver disease worldwide. Much effort has been expended to explore the pathogenesis of ALD. Hepatic cell injury, oxidative stress, inflammation, regeneration, and bacterial translocation are all involved in the pathogenesis of ALD. Immediate abstinence is the most important therapeutic treatment for affected individuals. However, the medical treatment for ALD had not advanced in a long period. Intriguingly, an increasing body of research indicates the potential of natural compounds in the targeted therapy of ALD. A plethora of dietary natural products such as flavonoids, resveratrol, saponins, and ß-carotene are found to exert protective effects on ALD. This occurs through various mechanisms composed of antioxidative, anti-inflammatory, iron chelation, pro-apoptosis, and/or antiproliferation of hepatic stellate cells and hepatocellular carcinoma cells. In this review, we will summarize current knowledge about the pathogenesis and treatments of ALD and focus on the potential of natural compounds in ALD therapies and underlying mechanisms.


Assuntos
Produtos Biológicos/uso terapêutico , Quimioprevenção/métodos , Hepatopatias Alcoólicas/tratamento farmacológico , Produtos Biológicos/farmacologia , Humanos , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle
15.
Protein Expr Purif ; 151: 93-98, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29908913

RESUMO

The sorting nexin (SNX) family proteins play an essential role in vesicular transport, cell signaling, and membrane remodeling. The SNX members SNX1/2 and SNX5/6 form dimers, and mediate endosome-to-trans Golgi network (TGN) transport through coordinating cargo selection and membrane remodeling. It is well-known how a SNX-BAR protein forms a homodimer; however, it is less clear how a heterodimer is formed. Here a detailed expression and purification protocol of the SNX1/SNX6 complex, from both worm and human, is described. Keys to the successful protein production include co-expression of both genes, and inclusion of glycerol in the protein buffer. Solution studies suggest that SNX1 and SNX6 form a 1:1 heterodimer. The production of a large amount, high quality of the SNX1/SNX6 complex provides a basis for future biochemical and structural studies of the complex, and in vitro reconstitution of SNX1/SNX6-mediated transport.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/isolamento & purificação , Nexinas de Classificação/biossíntese , Nexinas de Classificação/isolamento & purificação , Proteínas de Caenorhabditis elegans/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Multimerização Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Nexinas de Classificação/genética
16.
Genes Dev ; 23(7): 849-61, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19339690

RESUMO

The transcription factor NF-kappaB is a critical regulator of inflammatory and cell survival signals. Proteasomal degradation of NF-kappaB subunits plays an important role in the termination of NF-kappaB activity, and at least one of the identified ubiquitin ligases is a multimeric complex containing Copper Metabolism Murr1 Domain 1 (COMMD1) and Cul2. We report here that GCN5, a histone acetyltransferase, associates with COMMD1 and other components of the ligase, promotes RelA ubiquitination, and represses kappaB-dependent transcription. In this role, the acetyltransferase activity of GCN5 is not required. Interestingly, GCN5 binds more avidly to RelA after phosphorylation on Ser 468, an event that is dependent on IKK activity. Consistent with this, we find that both GCN5 and the IkappaB Kinase (IKK) complex promote RelA degradation. Collectively, the data indicate that GCN5 participates in the ubiquitination process as an accessory factor for a ubiquitin ligase, where it provides a novel link between phosphorylation and ubiquitination.


Assuntos
Coenzimas/metabolismo , Fator de Transcrição RelA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Quinase I-kappa B/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Estabilidade Proteica , Ubiquitinação
18.
Proc Natl Acad Sci U S A ; 110(2): 618-23, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267096

RESUMO

NF-κB is the master regulator of the immune response and is responsible for the transcription of hundreds of genes controlling inflammation and immunity. Activation of NF-κB occurs in the cytoplasm through the kinase activity of the IκB kinase complex, which leads to translocation of NF-κB to the nucleus. Once in the nucleus, NF-κB transcriptional activity is regulated by DNA binding-dependent ubiquitin-mediated proteasomal degradation. We have identified the deubiquitinase Ubiquitin Specific Protease-7 (USP7) as a regulator of NF-κB transcriptional activity. USP7 deubiquitination of NF-κB leads to increased transcription. Loss of USP7 activity results in increased ubiquitination of NF-κB, leading to reduced promoter occupancy and reduced expression of target genes in response to Toll-like- and TNF-receptor activation. These findings reveal a unique mechanism controlling NF-κB activity and demonstrate that the deubiquitination of NF-κB by USP7 is critical for target gene transcription.


Assuntos
Regulação da Expressão Gênica/fisiologia , Modelos Moleculares , NF-kappa B/metabolismo , Transcrição Gênica/fisiologia , Ubiquitina Tiolesterase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , NF-kappa B/genética , Células NIH 3T3 , Peptídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica/genética , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Peptidase 7 Específica de Ubiquitina , Ubiquitinação
19.
Biochim Biophys Acta ; 1842(11): 2257-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25072958

RESUMO

The transcription factor NF-κB plays a critical role in the inflammatory response and it has been implicated in various diseases, including non-alcoholic fatty liver disease (NAFLD). Although transient NF-κB activation may protect tissues from stress, a prolonged NF-κB activation can have a detrimental effect on tissue homeostasis and therefore accurate termination is crucial. Copper Metabolism MURR1 Domain-containing 1 (COMMD1), a protein with functions in multiple pathways, has been shown to suppress NF-κB activity. However, its action in controlling liver inflammation has not yet been investigated. To determine the cell-type-specific contribution of Commd1 to liver inflammation, we used hepatocyte and myeloid-specific Commd1-deficient mice. We also used a mouse model of NAFLD to study low-grade chronic liver inflammation: we fed the mice a high fat, high cholesterol (HFC) diet, which results in hepatic lipid accumulation accompanied by liver inflammation. Depletion of hepatocyte Commd1 resulted in elevated levels of the NF-κB transactivation subunit p65 (RelA) but, surprisingly, the level of liver inflammation was not aggravated. In contrast, deficiency of myeloid Commd1 exacerbated diet-induced liver inflammation. Unexpectedly we observed that hepatic and myeloid Commd1 deficiency in the mice both augmented hepatic lipid accumulation. The elevated levels of proinflammatory cytokines in myeloid Commd1-deficient mice might be responsible for the increased level of steatosis. This increase was not seen in hepatocyte Commd1-deficient mice, in which increased lipid accumulation appeared to be independent of inflammation. Our mouse models demonstrate a cell-type-specific role for Commd1 in suppressing liver inflammation and in the progression of NAFLD.

20.
Gastroenterology ; 147(1): 184-195.e3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727021

RESUMO

BACKGROUND & AIMS: Activation of the transcription factor nuclear factor-κB (NF-κB) has been associated with the development of inflammatory bowel disease (IBD). Copper metabolism MURR1 domain containing 1 (COMMD1), a regulator of various transport pathways, has been shown to limit NF-κB activation. We investigated the roles of COMMD1 in the pathogenesis of colitis in mice and IBD in human beings. METHODS: We created mice with a specific disruption of Commd1 in myeloid cells (Mye-knockout [K/O] mice); we analyzed immune cell populations and functions and expression of genes regulated by NF-κB. Sepsis was induced in Mye-K/O and wild-type mice by cecal ligation and puncture or intraperitoneal injection of lipopolysaccharide (LPS), colitis was induced by administration of dextran sodium sulfate, and colitis-associated cancer was induced by administration of dextran sodium sulfate and azoxymethane. We measured levels of COMMD1 messenger RNA in colon biopsy specimens from 29 patients with IBD and 16 patients without (controls), and validated findings in an independent cohort (17 patients with IBD and 22 controls). We searched for polymorphisms in or near COMMD1 that were associated with IBD using data from the International IBD Genetics Consortium and performed quantitative trait locus analysis. RESULTS: In comparing gene expression patterns between myeloid cells from Mye-K/O and wild-type mice, we found that COMMD1 represses expression of genes induced by LPS. Mye-K/O mice had more intense inflammatory responses to LPS and developed more severe sepsis and colitis, with greater mortality. More Mye-K/O mice with colitis developed colon dysplasia and tumors than wild-type mice. We observed a reduced expression of COMMD1 in colon biopsy specimens and circulating leukocytes from patients with IBD. We associated single-nucleotide variants near COMMD1 with reduced expression of the gene and linked them with increased risk for ulcerative colitis. CONCLUSIONS: Expression of COMMD1 by myeloid cells has anti-inflammatory effects. Reduced expression or function of COMMD1 could be involved in the pathogenesis of IBD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Colite/prevenção & controle , Colite/fisiopatologia , Neoplasias do Colo/prevenção & controle , Neoplasias do Colo/fisiopatologia , Inflamação/genética , Inflamação/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Azoximetano/efeitos adversos , Biópsia , Estudos de Casos e Controles , Colite/induzido quimicamente , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA