Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 702, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993800

RESUMO

Animals typically have either compound eyes, or camera-type eyes, both of which have evolved repeatedly in the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. At the molecular level deeply conserved genes that relate to the differentiation of photoreceptor cells have fueled a discussion on whether or not a shared evolutionary origin might be considered for this cell type. In contrast, only a handful of studies, primarily on the compound eyes of Drosophila melanogaster, have demonstrated molecular similarities in SupCs. D. melanogaster SupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to question if there could be conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetle Thermonectus marmoratus. To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several common features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate similarities, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas. T. marmoratus SupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results suggest that T. marmoratus SupCs are a form of glia, and like photoreceptors, may be deeply conserved.


Assuntos
Besouros , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Besouros/genética , Larva/genética , Retina , Neuroglia/metabolismo
2.
J Exp Biol ; 224(Pt 4)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632851

RESUMO

Vision is one of the most important senses for humans and animals alike. Diverse elegant specializations have evolved among insects and other arthropods in response to specific visual challenges and ecological needs. These specializations are the subject of this Review, and they are best understood in light of the physical limitations of vision. For example, to achieve high spatial resolution, fine sampling in different directions is necessary, as demonstrated by the well-studied large eyes of dragonflies. However, it has recently been shown that a comparatively tiny robber fly (Holcocephala) has similarly high visual resolution in the frontal visual field, despite their eyes being a fraction of the size of those of dragonflies. Other visual specializations in arthropods include the ability to discern colors, which relies on parallel inputs that are tuned to spectral content. Color vision is important for detection of objects such as mates, flowers and oviposition sites, and is particularly well developed in butterflies, stomatopods and jumping spiders. Analogous to color vision, the visual systems of many arthropods are specialized for the detection of polarized light, which in addition to communication with conspecifics, can be used for orientation and navigation. For vision in low light, optical superposition compound eyes perform particularly well. Other modifications to maximize photon capture involve large lenses, stout photoreceptors and, as has been suggested for nocturnal bees, the neural pooling of information. Extreme adaptations even allow insects to see colors at very low light levels or to navigate using the Milky Way.


Assuntos
Artrópodes , Borboletas , Visão de Cores , Odonatos , Animais , Abelhas , Insetos
3.
J Exp Biol ; 223(Pt 1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31796609

RESUMO

For proper function, vertebrate and invertebrate visual systems must be able to achieve and maintain emmetropia, a state where distant objects are in focus on the retina. In vertebrates, this is accomplished through a combination of genetic control during early development and homeostatic visual input that fine-tunes the optics of the eye. While emmetropization has long been researched in vertebrates, it is largely unknown how emmetropia is established in arthropods. We used a micro-ophthalmoscope to directly measure how the lens projects images onto the retina in the eyes of small, live arthropods, allowing us to compare the refractive states of light-reared and dark-reared arthropods. First, we measured the image-forming larval eyes of diving beetles (Thermonectus marmoratus), which are known to grow rapidly and dramatically between larval instars. Then, we measured the image-forming principal anterior-median eyes of jumping spiders (Phidippus audax) after emergence from their egg cases. Finally, we measured individual ommatidia in the compound eyes of flesh flies (Sarcophaga bullata) that had developed and emerged under either light or dark conditions. Surprisingly, and in sharp contrast to vertebrates, our data for this diverse set of arthropods suggest that visual input is inconsequential in regard to achieving well-focused eyes. Although it remains unclear whether visual input that is received after the initial development further improves focusing, these results suggest that at least the initial coordination between the lens refractive power and eye size in arthropods may be more strongly predetermined by developmental factors than is typically the case in vertebrates.


Assuntos
Besouros/fisiologia , Emetropia , Sarcofagídeos/fisiologia , Aranhas/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Oftalmoscópios
4.
PLoS Genet ; 13(5): e1006782, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28562601

RESUMO

Glial cells play structural and functional roles central to the formation, activity and integrity of neurons throughout the nervous system. In the retina of vertebrates, the high energetic demand of photoreceptors is sustained in part by Müller glia, an intrinsic, atypical radial glia with features common to many glial subtypes. Accessory and support glial cells also exist in invertebrates, but which cells play this function in the insect retina is largely undefined. Using cell-restricted transcriptome analysis, here we show that the ommatidial cone cells (aka Semper cells) in the Drosophila compound eye are enriched for glial regulators and effectors, including signature characteristics of the vertebrate visual system. In addition, cone cell-targeted gene knockdowns demonstrate that such glia-associated factors are required to support the structural and functional integrity of neighboring photoreceptors. Specifically, we show that distinct support functions (neuronal activity, structural integrity and sustained neurotransmission) can be genetically separated in cone cells by down-regulating transcription factors associated with vertebrate gliogenesis (pros/Prox1, Pax2/5/8, and Oli/Olig1,2, respectively). Further, we find that specific factors critical for glial function in other species are also critical in cone cells to support Drosophila photoreceptor activity. These include ion-transport proteins (Na/K+-ATPase, Eaat1, and Kir4.1-related channels) and metabolic homeostatic factors (dLDH and Glut1). These data define genetically distinct glial signatures in cone/Semper cells that regulate their structural, functional and homeostatic interactions with photoreceptor neurons in the compound eye of Drosophila. In addition to providing a new high-throughput model to study neuron-glia interactions, the fly eye will further help elucidate glial conserved "support networks" between invertebrates and vertebrates.


Assuntos
Drosophila/metabolismo , Neuroglia/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Animais , Drosophila/citologia , Drosophila/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neuroglia/citologia , Células Fotorreceptoras de Invertebrados/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Dev Genes Evol ; 227(4): 271-278, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28477155

RESUMO

The dioptric visual system relies on precisely focusing lenses that project light onto a neural retina. While the proteins that constitute the lenses of many vertebrates are relatively well characterized, less is known about the proteins that constitute invertebrate lenses, especially the lens facets in insect compound eyes. To address this question, we used mass spectrophotometry to define the major proteins that comprise the corneal lenses from the adult Drosophila melanogaster compound eye. This led to the identification of four cuticular proteins: two previously identified lens proteins, drosocrystallin and retinin, and two newly identified proteins, Cpr66D and Cpr72Ec. To determine which ommatidial cells contribute each of these proteins to the lens, we conducted in situ hybridization at 50% pupal development, a key age for lens secretion. Our results confirm previous reports that drosocrystallin and retinin are expressed in the two primary corneagenous cells-cone cells and primary pigment cells. Cpr72Ec and Cpr66D, on the other hand, are more highly expressed in higher order interommatidial pigment cells. These data suggest that the complementary expression of cuticular proteins give rise to the center vs periphery of the corneal lens facet, possibly facilitating a refractive gradient that is known to reduce spherical aberration. Moreover, these studies provide a framework for future studies aimed at understanding the cuticular basis of corneal lens function in holometabolous insect eyes.


Assuntos
Cristalinas/análise , Proteínas de Drosophila/análise , Drosophila melanogaster/química , Drosophila melanogaster/genética , Animais , Olho Composto de Artrópodes/química , Córnea/química , Cristalinas/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Evolução Molecular , Proteínas do Olho/genética , Regulação da Expressão Gênica , Hibridização In Situ , Cristalino/química , Espectrometria de Massas , Pupa/química , Pupa/citologia , Pupa/crescimento & desenvolvimento
6.
J Exp Biol ; 220(Pt 22): 4095-4100, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141877

RESUMO

One of the most important functional features of eyes is focusing light, as both nearsightedness and farsightedness have major functional implications. Accordingly, refractive errors are frequently assessed in vertebrates, but not in the very small invertebrate eyes. We describe a micro-ophthalmoscope that takes advantage of autofluorescent properties of invertebrate photoreceptors and test the device on the relatively well-understood eyes of jumping spiders and flies. In each case, our measurements confirmed previous findings with a greater degree of accuracy. For example, we could precisely resolve the layering of the anterior median eyes and could map out the extensive retina of the anterior lateral eyes of the spider. Measurements also confirmed that fly ommatidia are focused into infinity, but showed that their focal plane is situated slightly below the receptor surface. In contrast to other approaches, this device does not rely on reflective tapeta and allows for precise optical assessment of diverse invertebrate eyes.


Assuntos
Dípteros/fisiologia , Oftalmoscópios , Oftalmoscopia/métodos , Imagem Óptica/instrumentação , Células Fotorreceptoras de Invertebrados/fisiologia , Aranhas/fisiologia , Animais , Fluorescência
7.
Evol Dev ; 18(4): 216-28, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27402568

RESUMO

Stemmata, the larval eyes of holometabolous insects are extremely diverse, ranging from full compound eyes, to a few ommatidial units as are typical in compound eyes, to sophisticated and functionally specialized image-forming camera-type eyes. Stemmata evolved from a compound eye ommatidial ancestor, an eye type that is morphologically well conserved in regards to cellular composition, and well studied in regards to development. However, despite this evolutionary origin it remains largely unknown how stemmata develop. In addition, it is completely unclear how development is altered to give rise to some of the functionally most complex stemmata, such as those of the sunburst diving beetle, Thermonectus marmoratus. In this study, we used histological methods to investigate the embryonic development of the functionally complex principal stemmata Eye 1 and Eye 2 of the larval visual system of T. marmoratus. To gain insights into how cellular components of their sophisticated camera-type eyes might have evolved from the cellular components of ommatidial ancestors, we contrast our findings against known features of ommatidia development, which are particularly well understood in Drosophila. We find many similarities, such as the early presence of a pseudostratified epithelium, and the order in which specific cell types are recruited. However, in Thermonectus each cell type is represented by a large number of cells from early on and major tissue re-orientation occurs as eye development progresses. This study provides insights into the timing of morphological features and represents the basis for future molecular studies.


Assuntos
Besouros/anatomia & histologia , Besouros/crescimento & desenvolvimento , Animais , Diferenciação Celular , Besouros/classificação , Embrião não Mamífero/anatomia & histologia , Olho/embriologia , Larva/anatomia & histologia , Cristalino/embriologia
8.
J Exp Biol ; 219(Pt 24): 3866-3874, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974533

RESUMO

The highly specialized evolution of Strepsiptera has produced one of the most unusual eyes among mature insects, perhaps in line with their extremely complex and challenging life cycle. This relatively rare insect order is one of the few for which it has been unclear what spectral classes of photoreceptors any of its members may possess, an even more apt question given the nocturnal evolution of the group. To address this question, we performed electroretinograms on adult male Xenos peckii: we measured spectral responses to equi-quantal monochromatic light flashes of different wavelengths, and established VlogI relationships to calculate spectral sensitivities. Based on opsin template fits, we found maximal spectral sensitivity (λmax) in the green domain at 539 nm. Application of a green light to 'bleach' green receptors revealed that a UV peak was contributed to by an independent UV opsin with a λmax of 346 nm. Transcriptomics and a phylogenetic analysis including 50 other opsin sequences further confirmed the presence of these two opsin classes. While these findings do not necessarily indicate that these unorthodox insects have color vision, they raise the possibility that UV vision plays an important role in the ability of X. peckii males to find the very cryptic strepsipteran females that are situated within their wasp hosts.


Assuntos
Células Fotorreceptoras de Invertebrados/fisiologia , Raios Ultravioleta , Vespas/citologia , Vespas/fisiologia , Animais , Eletrorretinografia , Feminino , Masculino , Opsinas/genética , Opsinas/metabolismo , Parasitos/genética , Parasitos/ultraestrutura , Células Fotorreceptoras de Invertebrados/ultraestrutura , Filogenia , Análise Espectral , Transcriptoma/genética , Vespas/genética , Vespas/ultraestrutura
9.
Artigo em Inglês | MEDLINE | ID: mdl-26358041

RESUMO

However complex a visual system is, the size (and growth rate) of all its components-lens, retina and nervous system-must be precisely tuned to each other for the system to be functional. As organisms grow, their eyes must be able to achieve and maintain emmetropia, a state in which photoreceptors receive sharp images of objects that are at infinity. While there has been ample research into how vertebrates coordinate eyes growth, this has never been addressed in arthropods with camera eyes, which tend to grow dramatically and typically in a step-wise manner with each molt (ecdysis). Here, we used histological and optical methods to measure how the larval eyes of Sunburst Diving Beetles (Thermonectus marmoratus, Coleoptera, Dytiscidae) grow, and how well optical and morphological parameters match, during the dramatic growth that occurs between two consecutive larval stages. We find that the eye tubes of the principal eyes of T. marmoratus grow substantially around molt, with the vitreous-like crystalline cone contributing the most to the overall growth. Lenses also reform relatively quickly, undergoing a period of dysfunction and then regaining the ability to project sharp images onto the retina around 8 h post-molt.


Assuntos
Besouros/crescimento & desenvolvimento , Olho Composto de Artrópodes/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento
10.
Artigo em Inglês | MEDLINE | ID: mdl-25261360

RESUMO

A particularly unusual visual system exists in the visually guided aquatic predator, the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). The question arises: how does this peculiar visual system function? A series of experiments suggests that their principal eyes (E1 and E2) are highly specialized for hunting. These eyes are tubular and have relatively long focal lengths leading to high image magnification. Their retinae are linear, and are divided into distinct green-sensitive distal and UV and polarization-sensitive proximal portions. Each distal retina, moreover, has many tiers of photoreceptors with rhabdomeres the long axis of which are peculiarly oriented perpendicular to the light path. Based on detailed optical investigations, the lenses of these eyes are bifocal and project focused images onto specific retinal tiers. Behavioral experiments suggest that these larvae approach prey within their eyes' near-fields, and that they can correctly gauge prey distances even when conventional distance-vision mechanisms are unavailable. In the near-field of these eyes object distance determines which of the many retinal layers receive the best-focused images. This retinal organization could facilitate an unusual distance-vision mechanism. We here summarize past findings and discuss how these eyes allow Thermonectus larvae to be such successful predators.


Assuntos
Besouros/anatomia & histologia , Besouros/fisiologia , Olho Composto de Artrópodes/anatomia & histologia , Olho Composto de Artrópodes/fisiologia , Comportamento Predatório/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Olho Composto de Artrópodes/crescimento & desenvolvimento , Meio Ambiente , Larva/anatomia & histologia , Larva/fisiologia , Água
11.
J Exp Biol ; 217(Pt 16): 2818-24, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25122913

RESUMO

Stemmata, the eyes of holometabolous insect larvae, have gained little attention, even though they exhibit remarkably different optical solutions, ranging from compound eyes with upright images, to sophisticated single-chamber eyes with inverted images. Such optical differences raise the question of how major transitions may have occurred. Stemmata evolved from compound eye ancestry, and optical differences are apparent even in some of the simplest systems that share strong cellular homology with adult ommatidia. The transition to sophisticated single-chamber eyes occurred many times independently, and in at least two different ways: through the fusion of many ommatidia [as in the sawfly (Hymenoptera)], and through the expansion of single ommatidia [as in tiger beetles (Coleoptera), antlions (Neuroptera) and dobsonflies (Megaloptera)]. Although ommatidia-like units frequently have multiple photoreceptor layers (tiers), sophisticated image-forming stemmata tend to only have one photoreceptor tier, presumably a consequence of the lens only being able to efficiently focus light on to one photoreceptor layer. An interesting exception is found in some diving beetles [Dytiscidae (Coleoptera)], in which two retinas receive sharp images from a bifocal lens. Taken together, stemmata represent a great model system to study an impressive set of optical solutions that evolved from a relatively simple ancestral organization.


Assuntos
Evolução Biológica , Olho Composto de Artrópodes/anatomia & histologia , Insetos/anatomia & histologia , Insetos/fisiologia , Larva/fisiologia , Animais , Insetos/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Células Fotorreceptoras/citologia
12.
J Exp Biol ; 217(Pt 14): 2509-16, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24803456

RESUMO

Very few visual systems diverge fundamentally from the basic plans of well-studied animal eyes. However, investigating those that do can provide novel insights into visual system function. A particularly unusual system exists in the principal larval eyes of a visually guided aquatic predator, the sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dystiscidae). These eyes are characterized by complex layered distal and proximal retinas. We previously reported that their principal eye E2 has a bifocal lens, and previous behavioral experiments suggested that these larvae have a unilateral range-finding mechanism that may involve their bizarre eye organization. In the present study, we expanded our optical measurements and found that: (1) E1 also has a bifocal lens, (2) E1 is best suited for far vision while E2 is best suited for near vision and (3) throughout their typical hunting range, the positions of focused images shift across specific retinal layers. This anatomical and optical organization in principle could support unilateral range finding. Taken together, our findings outline an unusual visual mechanism that is likely to be essential for the extraordinary hunting ability of these larvae.


Assuntos
Besouros/anatomia & histologia , Percepção de Profundidade , Olho/anatomia & histologia , Larva/anatomia & histologia , Animais , Comportamento Predatório , Retina/anatomia & histologia , Visão Ocular
13.
J Exp Biol ; 217(Pt 3): 327-30, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24477608

RESUMO

One of the biggest challenges that predators, such as the larvae of the diving beetle Thermonectus marmoratus (Coleoptera: Dytiscidae), are faced with is to accurately assess the distance of their prey. Most animals derive distance information from disparities of images that are viewed from different angles, from information that is obtained from well-controlled translational movements (motion parallax) or from the image size of known objects. Using a behavioral assay we demonstrated that T. marmoratus larvae continue to accurately strike at artificial prey, even if none of these typical distance estimation cues are available to them. Specifically, we excluded bilateral binocular stereopsis by occlusion, confounded possible motion parallax cues with an artificially moving prey, and excluded the possibility that beetle larvae simply approached their targets based on known prey size by presenting different prey sizes. Despite these constraints, larvae consistently struck our artificial targets from a distance of ~4.5 mm. Based on these findings we conclude that T. marmoratus likely employ an unusual mechanism to accurately determine prey distances, possibly mediated by the object-distance-dependent activation of specific subsets of their many-tiered and peculiarly positioned photoreceptors.


Assuntos
Besouros/fisiologia , Comportamento Predatório , Animais , Mergulho , Larva/fisiologia
14.
Curr Biol ; 34(7): 1569-1575.e3, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38513653

RESUMO

For eyes to maintain optimal focus, precise coordination is required between lens optics and retina position, a mechanism that in vertebrates is governed by genetics, visual feedback, and possibly intraocular pressure (IOP).1 While the underlying processes have been intensely studied in vertebrates, they remain elusive in arthropods, though visual feedback may be unimportant.2 How do arthropod eyes remain functional while undergoing substantial growth? Here, we test whether a common physiological process, osmoregulation,3 could regulate growth in the sophisticated camera-type eyes of the predatory larvae of Thermonectus marmoratus diving beetles. Upon molting, their eye tubes elongate in less than an hour, and osmotic pressure measurements reveal that this growth is preceded by a transient increase in hemolymph osmotic pressure. Histological evaluation of support cells that determine the lens-to-retina spacing reveals swelling rather than the addition of new cells. In addition, as expected, treating larvae with hyperosmotic media post-molt leads to far-sighted (hyperopic) eyes due to a failure of proper lengthening of the eye tube and results in impaired hunting success. This study suggests that osmoregulation could be of ubiquitous importance for properly focused eyes.


Assuntos
Besouros , Visão Ocular , Animais , Besouros/fisiologia , Larva/fisiologia , Retina , Osmose
15.
bioRxiv ; 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503285

RESUMO

Animals generally have either compound eyes, which have evolved repeatedly in different invertebrates, or camera eyes, which have evolved many times across the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. Despite many examples of convergence in eye evolution, similarities in the gross developmental plan and molecular signatures have been discovered, even between phylogenetically distant and functionally different eye types. For this reason, a shared evolutionary origin has been considered for photoreceptors. In contrast, only a handful of studies, primarily on the compound eyes of Drosophila melanogaster , have demonstrated molecular similarities in SupCs. D. melanogaster SupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to speculate whether there are conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetle Thermonectus marmoratus . To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several conserved features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate the extent of conservation, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas. T. marmoratus SupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results provide molecular evidence for the deep conservation of SupCs in addition to photoreceptor cells, raising essential questions about the evolutionary origin of eye-specific glia in animals.

16.
Front Cell Dev Biol ; 11: 1104620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065850

RESUMO

Astonishing functional diversity exists among arthropod eyes, yet eye development relies on deeply conserved genes. This phenomenon is best understood for early events, whereas fewer investigations have focused on the influence of later transcriptional regulators on diverse eye organizations and the contribution of critical support cells, such as Semper cells (SCs). As SCs in Drosophila melanogaster secrete the lens and function as glia, they are critical components of ommatidia. Here, we perform RNAi-based knockdowns of the transcription factor cut (CUX in vertebrates), a marker of SCs, the function of which has remained untested in these cell types. To probe for the conserved roles of cut, we investigate two optically different compound eyes: the apposition optics of D. melanogaster and the superposition optics of the diving beetle Thermonectus marmoratus. In both cases, we find that multiple aspects of ocular formation are disrupted, including lens facet organization and optics as well as photoreceptor morphogenesis. Together, our findings support the possibility of a generalized role for SCs in arthropod ommatidial form and function and introduces Cut as a central player in mediating this role.

17.
Vision Res ; 206: 108185, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36758462

RESUMO

Age-related macular degeneration (AMD) is a leading cause of vision loss in humans. Despite its prevalence and medical significance, many aspects of AMD remain elusive and treatment options are limited. Here, we present data that suggest jumping spiders offer a unique opportunity for understanding the fundamentals underlying retinal degeneration, thereby shedding light on a process that impacts millions of people globally. Using a micro-ophthalmoscope and histological evidence, we demonstrate that significant photoreceptor damage can occur during development in the image-forming anterior lateral eyes of the jumping spider Phidippus audax. Furthermore, we find that this photoreceptor degeneration is exacerbated by inadequate nutrition and is most prevalent in the high-density region of the retina, like AMD in humans. This suggests that similar to those in vertebrates, the retinas in P. audax are challenged to meet high-energy cellular demands.


Assuntos
Degeneração Macular , Degeneração Retiniana , Aranhas , Animais , Humanos , Retina/patologia , Degeneração Retiniana/patologia
18.
J Exp Biol ; 215(Pt 20): 3577-86, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22771743

RESUMO

Polarization sensitivity has most often been studied in mature insects, yet it is likely that larvae also make use of this visual modality. The aquatic larvae of the predacious diving beetle Thermonectus marmoratus are highly successful visually guided predators, with a UV-sensitive proximal retina that, according to its ultrastructure, has three distinct cell types with anatomical attributes that are consistent with polarization sensitivity. In the present study we used electrophysiological methods and single-cell staining to confirm polarization sensitivity in the proximal retinas of both principal eyes of these larvae. As expected from their microvillar orientation, cells of type T1 are most sensitive to vertically polarized light, while cells of type T2 are most sensitive to horizontally polarized light. In addition, T3 cells probably constitute a second population of cells that are most sensitive to light with vertical e-vector orientation, characterized by shallower polarization modulations, and smaller polarization sensitivity (PS) values than are typical for T1 cells. The level of PS values found in this study suggests that polarization sensitivity probably plays an important role in the visual system of these larvae. Based on their natural history and behavior, possible functions are: (1) finding water after hatching, (2) finding the shore before pupation, and (3) making prey more visible, by filtering out horizontally polarized haze, and/or using polarization features for prey detection.


Assuntos
Besouros/fisiologia , Animais , Besouros/anatomia & histologia , Fenômenos Eletrofisiológicos , Olho/anatomia & histologia , Larva/fisiologia , Luz , Fenômenos Fisiológicos Oculares , Retina/citologia , Retina/fisiologia , Visão Ocular
19.
Curr Opin Insect Sci ; 52: 100914, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35346895

RESUMO

Under strong selective pressure for survival, image-forming vision set off an ongoing predatory arms race 500 million years ago. Since then, and particularly so in the arthropods, predatory behavior has driven a myriad of eye adaptations that increase visual performance. In this review, we provide examples of how different arthropod predators have achieved improvements in key visual features such as spatial and temporal resolution of their retina. We then describe morphological, neural and behavioral strategies used by animals in this group to gather crucial information about the prey, such as its distance, velocity and size. We also highlight the importance of head and body tracking movements to aid in categorizing the potential prey, and briefly mention the ongoing work on the sensorimotor transformations necessary for target interception.


Assuntos
Artrópodes , Comportamento Predatório , Animais , Retina , Visão Ocular
20.
Front Cell Dev Biol ; 10: 964746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092740

RESUMO

Vision is among the oldest and arguably most important sensory modalities for animals to interact with their external environment. Although many different eye types exist within the animal kingdom, mounting evidence indicates that the genetic networks required for visual system formation and function are relatively well conserved between species. This raises the question as to how common developmental programs are modified in functionally different eye types. Here, we approached this issue through EyeVolve, an open-source PYTHON-based model that recapitulates eye development based on developmental principles originally identified in Drosophila melanogaster. Proof-of-principle experiments showed that this program's animated timeline successfully simulates early eye tissue expansion, neurogenesis, and pigment cell formation, sequentially transitioning from a disorganized pool of progenitor cells to a highly organized lattice of photoreceptor clusters wrapped with support cells. Further, tweaking just five parameters (precursor pool size, founder cell distance and placement from edge, photoreceptor subtype number, and cell death decisions) predicted a multitude of visual system layouts, reminiscent of the varied eye types found in larval and adult arthropods. This suggests that there are universal underlying mechanisms that can explain much of the existing arthropod eye diversity. Thus, EyeVolve sheds light on common principles of eye development and provides a new computational system for generating specific testable predictions about how development gives rise to diverse visual systems from a commonly specified neuroepithelial ground plan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA