RESUMO
While it is widely thought that de novo mutations (DNMs) occur randomly, we previously showed that some DNMs are enriched because they are positively selected in the testes of aging men. These "selfish" mutations cause disorders with a shared presentation of features, including exclusive paternal origin, significant increase of the father's age, and high apparent germline mutation rate. To date, all known selfish mutations cluster within the components of the RTK-RAS-MAPK signaling pathway, a critical modulator of testicular homeostasis. Here, we demonstrate the selfish nature of the SMAD4 DNMs causing Myhre syndrome (MYHRS). By analyzing 16 informative trios, we show that MYHRS-causing DNMs originated on the paternally derived allele in all cases. We document a statistically significant epidemiological paternal age effect of 6.3 years excess for fathers of MYHRS probands. We developed an ultra-sensitive assay to quantify spontaneous MYHRS-causing SMAD4 variants in sperm and show that pathogenic variants at codon 500 are found at elevated level in sperm of most men and exhibit a strong positive correlation with donor's age, indicative of a high apparent germline mutation rate. Finally, we performed in vitro assays to validate the peculiar functional behavior of the clonally selected DNMs and explored the basis of the pathophysiology of the different SMAD4 sperm-enriched variants. Taken together, these data provide compelling evidence that SMAD4, a gene operating outside the canonical RAS-MAPK signaling pathway, is associated with selfish spermatogonial selection and raises the possibility that other genes/pathways are under positive selection in the aging human testis.
Assuntos
Mutação em Linhagem Germinativa , Deficiência Intelectual , Proteína Smad4 , Humanos , Masculino , Proteína Smad4/genética , Deficiência Intelectual/genética , Contratura/genética , Adulto , Fácies , Espermatozoides/metabolismo , Espermatozoides/patologia , Criptorquidismo/genética , Transtornos do Crescimento/genética , Deformidades Congênitas da Mão/genética , Seleção Genética , Alelos , Idade Paterna , Testículo/patologia , Testículo/metabolismoRESUMO
The germline mutation rate (GMR) sets the pace at which mutations, the raw material of evolution, are introduced into the genome. By sequencing a dataset of unprecedently broad phylogenetic scope, Bergeron et al. estimated species-specific GMR, offering numerous insights into how this parameter shapes and is shaped by life-history traits.
Assuntos
Evolução Molecular , Mutação em Linhagem Germinativa , Filogenia , Mutação em Linhagem Germinativa/genética , Taxa de Mutação , MutaçãoRESUMO
Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.
Assuntos
Papaver , Papaver/genética , Papaver/metabolismo , Duplicação Gênica , Genoma , Evolução MolecularRESUMO
BACKGROUND: Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS: We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS: This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.
Assuntos
Chlorella , Humanos , Chlorella/genética , Centrômero/genética , Plantas/genética , Elementos de DNA Transponíveis , Telômero/genéticaRESUMO
Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.
Assuntos
Fígado Gorduroso/genética , Macrófagos/metabolismo , Anormalidades Musculoesqueléticas/genética , Desenvolvimento Musculoesquelético/genética , Osteopetrose/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Modelos Animais de Doenças , Embrião de Mamíferos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/terapia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Reporter , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/deficiência , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Masculino , Anormalidades Musculoesqueléticas/metabolismo , Anormalidades Musculoesqueléticas/patologia , Anormalidades Musculoesqueléticas/terapia , Osteopetrose/metabolismo , Osteopetrose/patologia , Osteopetrose/terapia , Ratos , Ratos Transgênicos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiênciaRESUMO
Fibrillin-1 is a major component of the extracellular microfibrils, where it interacts with other extracellular matrix proteins to provide elasticity to connective tissues, and regulates the bioavailability of TGFß family members. A peptide consisting of the C-terminal 140 amino acids of fibrillin-1 has recently been identified as a glucogenic hormone, secreted from adipose tissue during fasting and targeting the liver to release glucose. This fragment, called asprosin, also signals in the hypothalamus to stimulate appetite. Asprosin levels are correlated with many of the pathologies indicative of metabolic syndrome, including insulin resistance and obesity. Previous studies and reviews have addressed the therapeutic potential of asprosin as a target in obesity, diabetes and related conditions without considering mechanisms underlying the relationship between generation of asprosin and expression of the much larger fibrillin-1 protein. Profibrillin-1 undergoes obligatory cleavage at the cell surface as part of its assembly into microfibrils, producing the asprosin peptide as well as mature fibrillin-1. Patterns of FBN1 mRNA expression are inconsistent with the necessity for regulated release of asprosin. The asprosin peptide may be protected from degradation in adipose tissue. We present evidence for an alternative possibility, that asprosin mRNA is generated independently from an internal promoter within the 3' end of the FBN1 gene, which would allow for regulation independent of fibrillin-synthesis and is more economical of cellular resources. The discovery of asprosin opened exciting possibilities for treatment of metabolic syndrome related conditions, but there is much to be understood before such therapies could be introduced into the clinic.
Assuntos
Síndrome Metabólica , Humanos , Fibrilina-1/genética , Fibrilina-2 , Fibrilinas , Glucose , Síndrome Metabólica/genética , Proteínas dos Microfilamentos/genética , Obesidade/genética , RNA Mensageiro , Adipocinas/genéticaRESUMO
The mononuclear phagocyte system (MPS) is a family of cells including progenitors, circulating blood monocytes, resident tissue macrophages, and dendritic cells (DCs) present in every tissue in the body. To test the relationships between markers and transcriptomic diversity in the MPS, we collected from National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) a total of 466 quality RNA sequencing (RNA-seq) data sets generated from mouse MPS cells isolated from bone marrow, blood, and multiple tissues. The primary data were randomly downsized to a depth of 10 million reads and requantified. The resulting data set was clustered using the network analysis tool BioLayout. A sample-to-sample matrix revealed that MPS populations could be separated based upon tissue of origin. Cells identified as classical DC subsets, cDC1s and cDC2s, and lacking Fcgr1 (encoding the protein CD64) were contained within the MPS cluster, no more distinct than other MPS cells. A gene-to-gene correlation matrix identified large generic coexpression clusters associated with MPS maturation and innate immune function. Smaller coexpression gene clusters, including the transcription factors that drive them, showed higher expression within defined isolated cells, including monocytes, macrophages, and DCs isolated from specific tissues. They include a cluster containing Lyve1 that implies a function in endothelial cell (EC) homeostasis, a cluster of transcripts enriched in intestinal macrophages, and a generic lymphoid tissue cDC cluster associated with Ccr7. However, transcripts encoding Adgre1, Itgax, Itgam, Clec9a, Cd163, Mertk, Mrc1, Retnla, and H2-a/e (encoding class II major histocompatibility complex [MHC] proteins) and many other proposed macrophage subset and DC lineage markers each had idiosyncratic expression profiles. Coexpression of immediate early genes (for example, Egr1, Fos, Dusp1) and inflammatory cytokines and chemokines (tumour necrosis factor [Tnf], Il1b, Ccl3/4) indicated that all tissue disaggregation and separation protocols activate MPS cells. Tissue-specific expression clusters indicated that all cell isolation procedures also co-purify other unrelated cell types that may interact with MPS cells in vivo. Comparative analysis of RNA-seq and single-cell RNA-seq (scRNA-seq) data from the same lung cell populations indicated that MPS heterogeneity implied by global cluster analysis may be even greater at a single-cell level. This analysis highlights the power of large data sets to identify the diversity of MPS cellular phenotypes and the limited predictive value of surface markers to define lineages, functions, or subpopulations.
Assuntos
Células Dendríticas/metabolismo , Redes Reguladoras de Genes , Macrófagos/metabolismo , Transcriptoma/genética , Animais , Biomarcadores/metabolismo , Separação Celular , Bases de Dados como Assunto , Células Dendríticas/citologia , Regulação da Expressão Gênica , Genes Essenciais , Rim/metabolismo , Ativação de Macrófagos/genética , Macrófagos/citologia , Camundongos , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Baço/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.
Assuntos
Imunidade Adaptativa , Modelos Animais de Doenças , Imunidade Inata , Sistema Fagocitário Mononuclear/imunologia , Ratos , Animais , Genoma , Homeostase/imunologia , Inflamação/imunologia , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Mutação , FenótipoRESUMO
Alternative splicing is widespread throughout eukaryotic genomes and greatly increases transcriptomic diversity. Many alternative isoforms have functional roles in developmental processes and are precisely temporally regulated. To facilitate the study of alternative splicing in a developmental context, we created MeDAS, a Metazoan Developmental Alternative Splicing database. MeDAS is an added-value resource that re-analyses publicly archived RNA-seq libraries to provide quantitative data on alternative splicing events as they vary across the time course of development. It has broad temporal and taxonomic scope and is intended to assist the user in identifying trends in alternative splicing throughout development. To create MeDAS, we re-analysed a curated set of 2232 Illumina polyA+ RNA-seq libraries that chart detailed time courses of embryonic and post-natal development across 18 species with a taxonomic range spanning the major metazoan lineages from Caenorhabditis elegans to human. MeDAS is freely available at https://das.chenlulab.com both as raw data tables and as an interactive browser allowing searches by species, tissue, or genomic feature (gene, transcript or exon ID and sequence). Results will provide details on alternative splicing events identified for the queried feature and can be visualised at the gene-, transcript- and exon-level as time courses of expression and inclusion levels, respectively.
Assuntos
Processamento Alternativo , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Genoma , RNA Mensageiro/genética , Transcriptoma , Anfíbios/genética , Anfíbios/crescimento & desenvolvimento , Anfíbios/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Cefalocordados/genética , Cefalocordados/crescimento & desenvolvimento , Cefalocordados/metabolismo , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Íntrons , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento , Mamíferos/metabolismo , RNA Mensageiro/metabolismo , Répteis/genética , Répteis/crescimento & desenvolvimento , Répteis/metabolismo , Software , Urocordados/genética , Urocordados/crescimento & desenvolvimento , Urocordados/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismoRESUMO
Selection leaves signatures in the DNA sequence of genes, with many test statistics devised to detect its action. While these statistics are frequently used to support hypotheses about the adaptive significance of particular genes, the effect these genes have on reproductive fitness is rarely quantified experimentally. Consequently, it is unclear how gene-level signatures of selection are associated with empirical estimates of gene effect on fitness. Eukaryotic data sets that permit this comparison are very limited. Using the model plant Arabidopsis thaliana, for which these resources are available, we calculated seven gene-level substitution and polymorphism-based statistics commonly used to infer selection (dN/dS, NI, DOS, Tajima's D, Fu and Li's D*, Fay and Wu's H, and Zeng's E) and, using knockout lines, compared these to gene-level estimates of effect on fitness. We found that consistent with expectations, essential genes were more likely to be classified as negatively selected. By contrast, using 379 Arabidopsis genes for which data was available, we found no evidence that genes predicted to be positively selected had a significantly different effect on fitness than genes evolving more neutrally. We discuss these results in the context of the analytic challenges posed by Arabidopsis, one of the only systems in which this study could be conducted, and advocate for examination in additional systems. These results are relevant to the evaluation of genome-wide studies across species where experimental fitness data is unavailable, as well as highlighting an increasing need for the latter.
Assuntos
Arabidopsis , Aptidão Genética , Arabidopsis/genética , Sequência de Bases , Polimorfismo Genético , Seleção GenéticaRESUMO
Mutations in the human CSF1R gene have been associated with dominant and recessive forms of neurodegenerative disease. Here we describe the impacts of Csf1r mutation in the rat on development of the brain. Diffusion imaging indicated small reductions in major fiber tracts that may be associated in part with ventricular enlargement. RNA-seq profiling revealed a set of 105 microglial markers depleted in all brain regions of the Csf1rko rats. There was no evidence of region or sex-specific expression of microglia-associated transcripts. Other than the microglial signature, Csf1rko had no effect on any neuronal or region-specific transcript cluster. Expression of markers of oligodendrocytes, astrocytes, dopaminergic neurons and Purkinje cells was minimally affected. However, there were defects in dendritic arborization of doublecortin-positive neurogenic precursors and expression of poly-sialylated neural cell adhesion molecule (PS-NCAM) in the dentate gyrus of the hippocampus. Heterozygous Csf1rko rats had no detectable brain phenotype. We conclude that most brain developmental processes occur normally in the absence of microglia and that CSF1R haploinsufficiency is unlikely to cause leukoencephalopathy.
Assuntos
Microglia , Doenças Neurodegenerativas/genética , Neurogênese/fisiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Mutação , Ratos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genéticaRESUMO
The phosphatidylserine receptor TIM4, encoded by TIMD4, mediates the phagocytic uptake of apoptotic cells. We applied anti-chicken TIM4 mAbs in combination with CSF1R reporter transgenes to dissect the function of TIM4 in the chick (Gallus gallus). During development in ovo, TIM4 was present on the large majority of macrophages, but expression became more heterogeneous posthatch. Blood monocytes expressed KUL01, class II MHC, and CSF1R-mApple uniformly. Around 50% of monocytes were positive for surface TIM4. They also expressed many other monocyte-specific transcripts at a higher level than TIM4- monocytes. In liver, highly phagocytic TIM4hi cells shared many transcripts with mammalian Kupffer cells and were associated with uptake of apoptotic cells. Although they expressed CSF1R mRNA, Kupffer cells did not express the CSF1R-mApple transgene, suggesting that additional CSF1R transcriptional regulatory elements are required by these cells. By contrast, CSF1R-mApple was detected in liver TIM4lo and TIM4- cells, which were not phagocytic and were more abundant than Kupffer cells. These cells expressed CSF1R alongside high levels of FLT3, MHCII, XCR1, and other markers associated with conventional dendritic cells in mice. In bursa, TIM4 was present on the cell surface of two populations. Like Kupffer cells, bursal TIM4hi phagocytes coexpressed many receptors involved in apoptotic cell recognition. TIM4lo cells appear to be a subpopulation of bursal B cells. In overview, TIM4 is associated with phagocytes that eliminate apoptotic cells in the chick. In the liver, TIM4 and CSF1R reporters distinguished Kupffer cells from an abundant population of dendritic cell-like cells.
Assuntos
Fagócitos/imunologia , Receptores de Superfície Celular/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Galinhas , Receptores de Superfície Celular/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genéticaRESUMO
We have produced Csf1r-deficient rats by homologous recombination in embryonic stem cells. Consistent with the role of Csf1r in macrophage differentiation, there was a loss of peripheral blood monocytes, microglia in the brain, epidermal Langerhans cells, splenic marginal zone macrophages, bone-associated macrophages and osteoclasts, and peritoneal macrophages. Macrophages of splenic red pulp, liver, lung, and gut were less affected. The pleiotropic impacts of the loss of macrophages on development of multiple organ systems in rats were distinct from those reported in mice. Csf1r-/- rats survived well into adulthood with postnatal growth retardation, distinct skeletal and bone marrow abnormalities, infertility, and loss of visceral adipose tissue. Gene expression analysis in spleen revealed selective loss of transcripts associated with the marginal zone and, in brain regions, the loss of known and candidate novel microglia-associated transcripts. Despite the complete absence of microglia, there was little overt phenotype in brain, aside from reduced myelination and increased expression of dopamine receptor-associated transcripts in striatum. The results highlight the redundant and nonredundant functions of CSF1R signaling and of macrophages in development, organogenesis, and homeostasis.
Assuntos
Macrófagos , Microglia , Organogênese/genética , Ratos/crescimento & desenvolvimento , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência , Animais , Modelos Animais , Mutação , Ratos/genéticaRESUMO
Rationale: There is poor understanding about protective immunity and the pathogenesis of cavitation in patients with tuberculosis.Objectives: To map pathophysiological pathways at anatomically distinct positions within the human tuberculosis cavity.Methods: Biopsies were obtained from eight predetermined locations within lung cavities of patients with multidrug-resistant tuberculosis undergoing therapeutic surgical resection (n = 14) and healthy lung tissue from control subjects without tuberculosis (n = 10). RNA sequencing, immunohistochemistry, and bacterial load determination were performed at each cavity position. Differentially expressed genes were normalized to control subjects without tuberculosis, and ontologically mapped to identify a spatially compartmentalized pathophysiological map of the cavity. In silico perturbation using a novel distance-dependent dynamical sink model was used to investigate interactions between immune networks and bacterial burden, and to integrate these identified pathways.Measurements and Main Results: The median (range) lung cavity volume on positron emission tomography/computed tomography scans was 50 cm3 (15-389 cm3). RNA sequence reads (31% splice variants) mapped to 19,049 annotated human genes. Multiple proinflammatory pathways were upregulated in the cavity wall, whereas a downregulation "sink" in the central caseum-fluid interface characterized 53% of pathways including neuroendocrine signaling, calcium signaling, triggering receptor expressed on myeloid cells-1, reactive oxygen and nitrogen species production, retinoic acid-mediated apoptosis, and RIG-I-like receptor signaling. The mathematical model demonstrated that neuroendocrine, protein kinase C-θ, and triggering receptor expressed on myeloid cells-1 pathways, and macrophage and neutrophil numbers, had the highest correlation with bacterial burden (r > 0.6), whereas T-helper effector systems did not.Conclusions: These data provide novel insights into host immunity to Mycobacterium tuberculosis-related cavitation. The pathways defined may serve as useful targets for the design of host-directed therapies, and transmission prevention interventions.
Assuntos
Mycobacterium tuberculosis/isolamento & purificação , Análise de Sequência de RNA , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/isolamento & purificação , Adulto JovemRESUMO
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.
Assuntos
Perfilação da Expressão Gênica , Genoma , Carneiro Doméstico/genética , Transcriptoma/genética , Animais , Cruzamento , Análise por Conglomerados , Leite , Especificidade de Órgãos/genéticaRESUMO
BACKGROUND: The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. RESULTS: Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. CONCLUSION: Expression profiles obtained from public RNA-seq datasets - despite being generated by different laboratories using different methodologies - can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species.
Assuntos
Galinhas/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Animais , Atlas como Assunto , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
BACKGROUND: mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. RESULTS: Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. CONCLUSIONS: Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species.
Assuntos
Perfilação da Expressão Gênica/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , RNA Longo não Codificante/genética , Análise de Sequência de RNA/veterinária , Ovinos/genética , Animais , Bovinos , Mapeamento Cromossômico/veterinária , Bases de Dados Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Cabras/genética , Humanos , Anotação de Sequência Molecular , Especificidade de Órgãos , SinteniaRESUMO
BACKGROUND: The availability of fast alignment-free algorithms has greatly reduced the computational burden of RNA-seq processing, especially for relatively poorly assembled genomes. Using these approaches, previous RNA-seq datasets could potentially be processed and integrated with newly sequenced libraries. Confounding factors in such integration include sequencing depth and methods of RNA extraction and selection. Different selection methods (typically, either polyA-selection or rRNA-depletion) omit different RNAs, resulting in different fractions of the transcriptome being sequenced. In particular, rRNA-depleted libraries sample a broader fraction of the transcriptome than polyA-selected libraries. This study aimed to develop a systematic means of accounting for library type that allows data from these two methods to be compared. RESULTS: The method was developed by comparing two RNA-seq datasets from ovine macrophages, identical except for RNA selection method. Gene-level expression estimates were obtained using a two-part process centred on the high-speed transcript quantification tool Kallisto. Firstly, a set of reference transcripts was defined that constitute a standardised RNA space, with expression from both datasets quantified against it. Secondly, a simple ratio-based correction was applied to the rRNA-depleted estimates. The outcome is an almost perfect correlation between gene expression estimates, independent of library type and across the full range of levels of expression. CONCLUSION: A combination of reference transcriptome filtering and a ratio-based correction can create equivalent expression profiles from both polyA-selected and rRNA-depleted libraries. This approach will allow meta-analysis and integration of existing RNA-seq data into transcriptional atlas projects.
Assuntos
Poli A/genética , RNA Ribossômico/genética , RNA/metabolismo , Análise de Sequência de RNA , Transcriptoma , Animais , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , RNA/química , RNA/isolamento & purificação , RNA Ribossômico/metabolismo , OvinosRESUMO
BACKGROUND: Infants and toddlers often present with disseminated and lymph node tuberculosis, in which Mycobacterium tuberculosis (Mtb) is predominantly intracellular. Linezolid, used to treat tuberculosis in adults, has not been formally studied in infants. Infants clear linezolid 5 times faster than adults and achieve lower 0- to 24-hour area under the concentration-time curves (AUC0-24). METHODS: To mimic intracellular disease, we infected human-derived THP-1 macrophages with Mtb and inoculated hollow fiber systems. We performed dose-effect and dose-scheduling studies in which we recapitulated the linezolid half-life of 3 hours encountered in infants. Repetitive sampling for linezolid pharmacokinetics, Mtb intracellular burden, viable monocyte count, and RNA sequencing reads were performed up to 28 days. RESULTS: The linezolid extracellular half-life was 2.64 ± 0.38 hours, whereas intracellular half-life was 8.93 ± 1.30 hours (r2 = 0.89). Linezolid efficacy was linked to the AUC0-24 to minimum inhibitory concentration (MIC) ratio (r2 = 0.98). The exposure associated with maximal Mtb kill was an AUC0-24/MIC of 23.37 ± 1.16. We identified a 414-gene transcript on exposure to toxic linezolid doses. The largest number of genes mapped to ribosomal proteins, a signature hitherto not associated with linezolid toxicity. The second-largest number of differentially expressed genes mapped to mitochondrial enzyme inhibition. Linezolid AUC0-24 best explained the mitochondrial gene inhibition, with 50% inhibition at 94 mg × hour/L (highest r2 = 0.98). CONCLUSIONS: We identified the linezolid AUC0-24/MIC target for optimal efficacy against pediatric intracellular tuberculosis, and an AUC0-24 threshold associated with mitochondrial inhibition. These constitute a therapeutic window to be targeted for optimal linezolid doses in children with tuberculosis.