Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(5): 444-455, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883802

RESUMO

ABSTRACT: Transglutaminase factor XIII (FXIII) is essential for hemostasis, wound healing, and pregnancy maintenance. Plasma FXIII is composed of A and B subunit dimers synthesized in cells of hematopoietic origin and hepatocytes, respectively. The subunits associate tightly in circulation as FXIII-A2B2. FXIII-B2 stabilizes the (pro)active site-containing FXIII-A subunits. Interestingly, people with genetic FXIII-A deficiency have decreased FXIII-B2, and therapeutic infusion of recombinant FXIII-A2 (rFXIII-A2) increases FXIII-B2, suggesting FXIII-A regulates FXIII-B secretion, production, and/or clearance. We analyzed humans and mice with genetic FXIII-A deficiency and developed a mouse model of rFXIII-A2 infusion to define mechanisms mediating plasma FXIII-B levels. Like humans with FXIII-A deficiency, mice with genetic FXIII-A deficiency had reduced circulating FXIII-B2, and infusion of FXIII-A2 increased FXIII-B2. FXIII-A-deficient mice had normal hepatic function and did not store FXIII-B in liver, indicating FXIII-A does not mediate FXIII-B secretion. Transcriptional analysis and polysome profiling indicated similar F13b levels and ribosome occupancy in FXIII-A-sufficient and -deficient mice and in FXIII-A-deficient mice infused with rFXIII-A2, indicating FXIII-A does not induce de novo FXIII-B synthesis. Unexpectedly, pharmacokinetic/pharmacodynamic modeling of FXIII-B antigen after rFXIII-A2 infusion in humans and mice suggested FXIII-A2 slows FXIII-B2 loss from plasma. Accordingly, comparison of free FXIII-B2 vs FXIII-A2-complexed FXIII-B2 (FXIII-A2B2) infused into mice revealed faster clearance of free FXIII-B2. These data show FXIII-A2 prevents FXIII-B2 loss from circulation and establish the mechanism underlying FXIII-B2 behavior in FXIII-A deficiency and during rFXIII-A2 therapy. Our findings reveal a unique, reciprocal relationship between independently synthesized subunits that mediate an essential hemostatic protein in circulation. This trial was registered at www.ClinicalTrials.com as #NCT00978380.


Assuntos
Deficiência do Fator XIII , Animais , Feminino , Humanos , Camundongos , Gravidez , Testes de Coagulação Sanguínea , Fator XIII/metabolismo , Deficiência do Fator XIII/genética , Fator XIIIa/genética , Hemostasia , Hemostáticos/sangue
2.
Mol Cell Proteomics ; 21(4): 100217, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217172

RESUMO

Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture-based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.


Assuntos
Proteoma , Linfócitos T Reguladores , Linfócitos T CD8-Positivos , Humanos , Hipóxia , Microambiente Tumoral
3.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33536314

RESUMO

N terminomics is a powerful strategy for profiling proteolytic neo-N termini, but its application to cell surface proteolysis has been limited by the low relative abundance of plasma membrane proteins. Here we apply plasma membrane-targeted subtiligase variants (subtiligase-TM) to efficiently and specifically capture cell surface N termini in live cells. Using this approach, we sequenced 807 cell surface N termini and quantified changes in their abundance in response to stimuli that induce proteolytic remodeling of the cell surface proteome. To facilitate exploration of our datasets, we developed a web-accessible Atlas of Subtiligase-Captured Extracellular N Termini (ASCENT; http://wellslab.org/ascent). This technology will facilitate greater understanding of extracellular protease biology and reveal neo-N termini biomarkers and targets in disease.


Assuntos
Membrana Celular/metabolismo , Mapeamento de Peptídeos/métodos , Peptídeo Sintases/metabolismo , Subtilisinas/metabolismo , Células HEK293 , Humanos , Mutação , Peptídeo Sintases/genética , Processamento de Proteína Pós-Traducional , Proteólise , Subtilisinas/genética
4.
Nat Chem Biol ; 17(1): 113-121, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082574

RESUMO

Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml-1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Anticorpos de Cadeia Única/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Sítios de Ligação de Anticorpos/genética , Sítios de Ligação de Anticorpos/imunologia , Chlorocebus aethiops , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
5.
Blood ; 135(19): 1704-1717, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32315384

RESUMO

Obesity is a prevalent prothrombotic risk factor marked by enhanced fibrin formation and suppressed fibrinolysis. Fibrin both promotes thrombotic events and drives obesity pathophysiology, but a lack of essential analytical tools has left fibrinolytic mechanisms affected by obesity poorly defined. Using a plasmin-specific fluorogenic substrate, we developed a plasmin generation (PG) assay for mouse plasma that is sensitive to tissue plasminogen activator, α2-antiplasmin, active plasminogen activator inhibitor (PAI-1), and fibrin formation, but not fibrin crosslinking. Compared with plasmas from mice fed a control diet, plasmas from mice fed a high-fat diet (HFD) showed delayed PG and reduced PG velocity. Concurrent to impaired PG, HFD also enhanced thrombin generation (TG). The collective impact of abnormal TG and PG in HFD-fed mice produced normal fibrin formation kinetics but delayed fibrinolysis. Functional and proteomic analyses determined that delayed PG in HFD-fed mice was not due to altered levels of plasminogen, α2-antiplasmin, or fibrinogen. Changes in PG were also not explained by elevated PAI-1 because active PAI-1 concentrations required to inhibit the PG assay were 100-fold higher than circulating concentrations in mice. HFD-fed mice had increased circulating thrombomodulin, and inhibiting thrombomodulin or thrombin-activatable fibrinolysis inhibitor (TAFI) normalized PG, revealing a thrombomodulin- and TAFI-dependent antifibrinolytic mechanism. Integrating kinetic parameters to calculate the metric of TG/PG ratio revealed a quantifiable net shift toward a prothrombotic phenotype in HFD-fed mice. Integrating TG and PG measurements may define a prothrombotic risk factor in diet-induced obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fibrinolisina/metabolismo , Obesidade/patologia , Trombina/metabolismo , Trombomodulina/metabolismo , Trombose/patologia , Animais , Camundongos , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Trombose/etiologia , Trombose/metabolismo
6.
J Biol Chem ; 294(2): 390-396, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30409906

RESUMO

In cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), the amyloid ß (Aß) peptide deposits along the vascular lumen, leading to degeneration and dysfunction of surrounding tissues. Activated coagulation factor XIIIa (FXIIIa) covalently cross-links proteins in blood and vasculature, such as in blood clots and on the extracellular matrix. Although FXIIIa co-localizes with Aß in CAA, the ability of FXIIIa to cross-link Aß has not been demonstrated. Using Western blotting, kinetic assays, and microfluidic analyses, we show that FXIIIa covalently cross-links Aß40 into dimers and oligomers (kcat/Km = 1.5 × 105 m-1s-1), as well as to fibrin, platelet proteins, and blood clots under flow in vitro Aß40 also increased the stiffness of platelet-rich plasma clots in the presence of FXIIIa. These results suggest that FXIIIa-mediated cross-linking may contribute to the formation of Aß deposits in CAA and Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Sanguíneas/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Fator XIIIa/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Plaquetas/metabolismo , Plaquetas/patologia , Proteínas Sanguíneas/análise , Angiopatia Amiloide Cerebral/patologia , Fator XIIIa/análise , Fibrina/análise , Fibrina/metabolismo , Humanos , Fragmentos de Peptídeos/análise , Plasma Rico em Plaquetas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Multimerização Proteica
7.
Blood ; 130(16): 1795-1799, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-28811305

RESUMO

Red blood cells (RBCs) have historically been considered passive bystanders in thrombosis. However, clinical and epidemiological studies have associated quantitative and qualitative abnormalities in RBCs, including altered hematocrit, sickle cell disease, thalassemia, hemolytic anemias, and malaria, with both arterial and venous thrombosis. A growing body of mechanistic studies suggests that RBCs can promote thrombus formation and enhance thrombus stability. These findings suggest that RBCs may contribute to thrombosis pathophysiology and reveal potential strategies for therapeutically targeting RBCs to reduce thrombosis.


Assuntos
Eritrócitos/fisiologia , Trombose/sangue , Anemia Falciforme/sangue , Anemia Falciforme/patologia , Coagulação Sanguínea/fisiologia , Contagem de Eritrócitos , Eritrócitos/citologia , Eritrócitos/patologia , Hematócrito , Humanos , Talassemia/sangue , Talassemia/patologia , Trombose/etiologia , Trombose/patologia
8.
Blood ; 128(15): 1969-1978, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27561317

RESUMO

Coagulation transglutaminase factor XIII (FXIII) exists in circulation as heterotetrameric proenzyme FXIII-A2B2 Effectively all FXIII-A2B2 circulates bound to fibrinogen, and excess FXIII-B2 circulates in plasma. The motifs that mediate interaction of FXIII-A2B2 with fibrinogen have been elusive. We recently detected reduced binding of FXIII-A2B2 to murine fibrinogen that has γ-chain residues 390-396 mutated to alanines (Fibγ390-396A). Here, we evaluated binding features using human components, including recombinant fibrinogen variants, FXIII-A2B2, and isolated FXIII-A2 and -B2 homodimers. FXIII-A2B2 coprecipitated with wild-type (γA/γA), alternatively-spliced (γ'/γ'), and αC-truncated (Aα251) fibrinogens, whereas coprecipitation with human Fibγ390-396A was reduced by 75% (P <0001). Surface plasmon resonance showed γA/γA, γ'/γ', and Aα251 fibrinogens bound FXIII-A2B2 with high affinity (nanomolar); however, Fibγ390-396A did not bind FXIII-A2B2 These data indicate fibrinogen residues γ390-396 comprise the major binding motif for FXIII-A2B2 Compared with γA/γA clots, FXIII-A2B2 activation peptide release was 2.7-fold slower in Fibγ390-396A clots (P < .02). Conversely, activation of recombinant FXIII-A2 (lacking FXIII-B2) was similar in γA/γA and Fibγ390-396A clots, suggesting fibrinogen residues γ390-396 accelerate FXIII-A2B2 activation in a FXIII-B2-dependent mechanism. Recombinant FXIII-B2 bound γA/γA, γ'/γ', and Aα251 with similar affinities as FXIII-A2B2, but did not bind or coprecipitate with Fibγ390-396A FXIII-B2 also coprecipitated with fibrinogen from FXIII-A-deficient mouse and human plasmas. Collectively, these data indicate that FXIII-A2B2 binds fibrinogen residues γ390-396 via the B subunits, and that excess plasma FXIII-B2 is not free, but rather circulates bound to fibrinogen. These findings provide insight into assembly of the fibrinogen/FXIII-A2B2 complex in both physiologic and therapeutic situations.


Assuntos
Precursores Enzimáticos , Fator XIII , Fibronectinas , Motivos de Aminoácidos , Animais , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Fator XIII/química , Fator XIII/genética , Fator XIII/metabolismo , Fibronectinas/química , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
9.
Blood ; 126(20): 2329-37, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26359437

RESUMO

Coagulation factor XIIIa (FXIIIa) is a transglutaminase that covalently cross-links fibrin and other proteins to fibrin to stabilize blood clots and reduce blood loss. A clear mechanism to describe the physiological inactivation of FXIIIa has been elusive. Here, we show that plasmin can cleave FXIIIa in purified systems and in blood. Whereas zymogen FXIII was not readily cleaved by plasmin, FXIIIa was rapidly cleaved and inactivated by plasmin in solution (catalytic efficiency = 8.3 × 10(3) M(-1)s(-1)). The primary cleavage site identified by mass spectrometry was between K468 and Q469. Both plasma- and platelet-derived FXIIIa were susceptible to plasmin-mediated degradation. Inactivation of FXIIIa occurred during clot lysis and was enhanced both in plasma deficient in fibrinogen and in plasma treated with therapeutic levels of tissue plasminogen activator. These results indicate that FXIIIa activity can be modulated by fibrinolytic enzymes, and suggest that changes in fibrinolytic activity may influence cross-linking of blood proteins.


Assuntos
Fator XIII/metabolismo , Fibrinolisina/metabolismo , Fibrinólise/fisiologia , Proteólise , Fator XIII/química , Fibrinolisina/química , Humanos , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/metabolismo
10.
Blood ; 126(16): 1940-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324704

RESUMO

Factor XIII(a) [FXIII(a)] stabilizes clots and increases resistance to fibrinolysis and mechanical disruption. FXIIIa also mediates red blood cell (RBC) retention in contracting clots and determines venous thrombus size, suggesting FXIII(a) is a potential target for reducing thrombosis. However, the mechanism by which FXIIIa retains RBCs in clots is unknown. We determined the effect of FXIII(a) on human and murine clot weight and composition. Real-time microscopy revealed extensive RBC loss from clots formed in the absence of FXIIIa activity, and RBCs exhibited transient deformation as they exited the clots. Fibrin band-shift assays and flow cytometry did not reveal crosslinking of fibrin or FXIIIa substrates to RBCs, suggesting FXIIIa does not crosslink RBCs directly to the clot. RBCs were retained in clots from mice deficient in α2-antiplasmin, thrombin-activatable fibrinolysis inhibitor, or fibronectin, indicating RBC retention does not depend on these FXIIIa substrates. RBC retention in clots was positively correlated with fibrin network density; however, FXIIIa inhibition reduced RBC retention at all network densities. FXIIIa inhibition reduced RBC retention in clots formed with fibrinogen that lacks γ-chain crosslinking sites, but not in clots that lack α-chain crosslinking sites. Moreover, FXIIIa inhibitor concentrations that primarily block α-, but not γ-, chain crosslinking decreased RBC retention in clots. These data indicate FXIIIa-dependent retention of RBCs in clots is mediated by fibrin α-chain crosslinking. These findings expose a newly recognized, essential role for fibrin crosslinking during whole blood clot formation and consolidation and establish FXIIIa activity as a key determinant of thrombus composition and size.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Coagulação Sanguínea/fisiologia , Eritrócitos/metabolismo , gama-Glutamiltransferase/metabolismo , Animais , Fatores de Coagulação Sanguínea/genética , Carboxipeptidase B2/genética , Carboxipeptidase B2/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Transtornos Hemorrágicos/genética , Transtornos Hemorrágicos/metabolismo , Humanos , Camundongos , Camundongos Knockout , alfa 2-Antiplasmina/deficiência , alfa 2-Antiplasmina/genética , alfa 2-Antiplasmina/metabolismo , gama-Glutamiltransferase/genética
11.
Semin Thromb Hemost ; 42(4): 445-54, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27056150

RESUMO

Arterial and venous thromboses are major contributors to coagulation-associated morbidity and mortality. Greater understanding of mechanisms leading to thrombus formation and stability is expected to lead to improved treatment strategies. Factor XIII (FXIII) is a transglutaminase found in plasma and platelets. During thrombosis, activated FXIII cross-links fibrin and promotes thrombus stability. Recent studies have provided new information about FXIII activity during coagulation and its effects on clot composition and function. These findings reveal newly-recognized roles for FXIII in thrombosis. Herein, we review published literature on FXIII biology and effects on fibrin structure and stability, epidemiologic data associating FXIII with thrombosis, and evidence from animal models indicating FXIII has an essential role in determining thrombus stability, composition, and size.


Assuntos
Coagulação Sanguínea , Fator XIII/metabolismo , Fibrina/metabolismo , Trombose Venosa/sangue , Animais , Plaquetas/enzimologia , Humanos , Transglutaminases/sangue
12.
Arterioscler Thromb Vasc Biol ; 33(8): 1829-36, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23723374

RESUMO

OBJECTIVE: Individuals with elevated prothrombin, including those with the prothrombin G20210A mutation, have increased risk of venous thrombosis. Although these individuals do not have increased circulating prothrombotic biomarkers, their plasma demonstrates increased tissue factor-dependent thrombin generation in vitro. The objectives of this study were to determine the pathological role of elevated prothrombin in venous and arterial thrombosis in vivo, and distinguish thrombogenic mechanisms in these vessels. APPROACH AND RESULTS: Prothrombin was infused into mice to raise circulating levels. Venous thrombosis was induced by electrolytic stimulus to the femoral vein or inferior vena cava ligation. Arterial thrombosis was induced by electrolytic stimulus or ferric chloride application to the carotid artery. Mice infused with prothrombin demonstrated increased tissue factor-triggered thrombin generation measured ex vivo, but did not have increased circulating prothrombotic biomarkers in the absence of vessel injury. After venous injury, elevated prothrombin increased thrombin generation and the fibrin accumulation rate and total amount of fibrin ≈ 3-fold, producing extended thrombi with increased mass. However, elevated prothrombin did not accelerate platelet accumulation, increase the fibrin accumulation rate, or shorten the vessel occlusion time after arterial injury. CONCLUSIONS: These findings reconcile previously discordant findings on thrombin generation in hyperprothrombinemic individuals measured ex vivo and in vitro, and show elevated prothrombin promotes venous, but not arterial, thrombosis in vivo.


Assuntos
Coagulação Sanguínea/fisiologia , Protrombina/metabolismo , Trombofilia/metabolismo , Trombose Venosa/metabolismo , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Artérias Carótidas/fisiologia , Cloretos/farmacologia , Modelos Animais de Doenças , Veia Femoral/fisiologia , Compostos Férricos/farmacologia , Fibrina/metabolismo , Humanos , Camundongos , Noxas/farmacologia , Protrombina/farmacologia , Fatores de Risco , Trombofilia/induzido quimicamente , Trombofilia/epidemiologia , Veia Cava Inferior/fisiologia , Trombose Venosa/induzido quimicamente , Trombose Venosa/epidemiologia
13.
ACS Cent Sci ; 10(1): 199-208, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292613

RESUMO

The cell surface proteome (surfaceome) plays a pivotal role in virtually all extracellular biology, and yet we are only beginning to understand the protein complexes formed in this crowded environment. Recently, a high-resolution approach (µMap) was described that utilizes multiple iridium-photocatalysts attached to a secondary antibody, directed to a primary antibody of a protein of interest, to identify proximal neighbors by light-activated conversion of a biotin-diazirine to a highly reactive carbene followed by LC/MS (Geri, J. B.; Oakley, J. V.; Reyes-Robles, T.; Wang, T.; McCarver, S. J.; White, C. H.; Rodriguez-Rivera, F. P.; Parker, D. L.; Hett, E. C.; Fadeyi, O. O.; Oslund, R. C.; MacMillan, D. W. C. Science2020, 367, 1091-1097). Here we calibrated the spatial resolution for carbene labeling using site-specific conjugation of a single photocatalyst to a primary antibody drug, trastuzumab (Traz), in complex with its structurally well-characterized oncogene target, HER2. We observed relatively uniform carbene labeling across all amino acids, and a maximum distance of ∼110 Å from the fixed photocatalyst. When targeting HER2 overexpression cells, we identified 20 highly enriched HER2 neighbors, compared to a nonspecific membrane tethered catalyst. These studies identify new HER2 interactors and calibrate the radius of carbene photoprobe labeling for the surfaceome.

14.
Cancer Immunol Res ; 12(5): 575-591, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38588410

RESUMO

Poliovirus receptor-related 2 (PVRL2, also known as nectin-2 or CD112) is believed to act as an immune checkpoint protein in cancer; however, most insight into its role is inferred from studies on its known receptor, poliovirus receptor (PVR)-related immunoglobulin domain protein (PVRIG, also known as CD112R). Here, we study PVRL2 itself. PVRL2 levels were found to be high in tumor cells and tumor-derived exosomes. Deletion of PVRL2 in multiple syngeneic mouse models of cancer showed a dramatic reduction in tumor growth that was immune dependent. This effect was even greater than that seen with deletion of PD-L1. PVRL2 was shown to function by suppressing CD8+ T and natural killer cells in the tumor microenvironment. The loss of PVRL2 suppressed tumor growth even in the absence of PVRIG. In contrast, PVRIG loss showed no additive effect in the absence of PVRL2. T-cell immunoreceptor with Ig and ITIM domains (TIGIT) blockade combined with PVRL2 deletion resulted in a near complete block in tumor growth. This effect was not recapitulated by the combined deletion of PVRL2 with its paralog, PVR, which is the ligand for TIGIT. These data uncover PVRL2 as a distinct inhibitor of the antitumor immune response with functions beyond that of its known receptor PVRIG. Moreover, the data provide a strong rationale for combinatorial targeting of PVRL2 and TIGIT for cancer immunotherapy.


Assuntos
Nectinas , Receptores de Superfície Celular , Receptores Imunológicos , Microambiente Tumoral , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Nectinas/metabolismo , Camundongos , Humanos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Transdução de Sinais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo
16.
Nat Biotechnol ; 41(2): 273-281, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36138170

RESUMO

Targeted degradation of cell surface and extracellular proteins via lysosomal delivery is an important means to modulate extracellular biology. However, these approaches have limitations due to lack of modularity, ease of development, restricted tissue targeting and applicability to both cell surface and extracellular proteins. We describe a lysosomal degradation strategy, termed cytokine receptor-targeting chimeras (KineTACs), that addresses these limitations. KineTACs are fully genetically encoded bispecific antibodies consisting of a cytokine arm, which binds its cognate cytokine receptor, and a target-binding arm for the protein of interest. We show that KineTACs containing the cytokine CXCL12 can use the decoy recycling receptor, CXCR7, to target a variety of target proteins to the lysosome for degradation. Additional KineTACs were designed to harness other CXCR7-targeting cytokines, CXCL11 and vMIPII, and the interleukin-2 (IL-2) receptor-targeting cytokine IL-2. Thus, KineTACs represent a general, modular, selective and simple genetically encoded strategy for inducing lysosomal delivery of extracellular and cell surface targets with broad or tissue-specific distribution.


Assuntos
Quimera de Direcionamento de Proteólise , Receptores de Citocinas , Membrana Celular , Interleucina-2 , Receptores de Citocinas/química , Receptores de Citocinas/metabolismo , Transdução de Sinais , Proteólise , Quimiocina CXCL12/química
17.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546992

RESUMO

The cell surface proteome, or surfaceome, is encoded by more than 4000 genes, but we are only beginning to understand the complexes they form. Rapid proximity labeling around specific membrane targets allows for capturing weak and transient interactions expected in the crowded and dynamic environment of the surfaceome. Recently, a high-resolution approach called µMap has been described (Geri, J. B., Oakley, J. V., Reyes-Robles, T., Wang, T., McCarver, S. J., White, C. H., Rodriguez-Rivera, F. P., Parker, D. L., Hett, E. C., Fadeyi, O. O., Oslund, R. C., and MacMillan, D. W. C. (2020) Science 367 , 1091-1097) in which an iridium (Ir)-based photocatalyst is attached to a specific antibody to target labeling of neighbors utilizing light-activated generation of carbenes from diazirine compounds via Dexter Energy Transfer (DET). Here we studied and optimized the spatial resolution for the method using an oncoprotein complex between the antibody drug, trastuzumab (Traz), and its target HER2. A set of eight single site-specific Ir-catalytic centers were engineered into Traz to study intra- and inter-molecular labeling in vitro and on cells by mass spectrometry. From this structurally well-characterized complex we observed a maximum distance of ∼110 Å for labeling. Labeling occurred almost uniformly over the full range of amino acids, unlike the residue specific labeling of other techniques. To examine on cell labeling that is specific to HER2 as opposed to simply being on the membrane, we compared the labeling patterns for the eight Traz-catalyst species to random labeling of membrane proteins using a metabolically integrated fatty acid catalyst. Our results identified 20 high confidence HER2 neighbors, many novel, that were more than 6-fold enriched compared to the non-specific membrane tethered catalyst. These studies define distance labeling parameters from single-site catalysts placed directly on the membrane target of interest, and more accurately compare to non-specific labeling to identify membrane complexes with higher confidence.

18.
Cell Chem Biol ; 29(4): 597-604.e7, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35104453

RESUMO

Layilin is a small type I transmembrane receptor thought to bridge extracellular ligands with the cytoskeleton through its intracellular interactions with the scaffolding protein talin. Recent bulk- and single-cell RNA sequencing experiments have repeatedly found layilin to be highly upregulated in key T cell sub-populations in multiple disease states, suggesting its importance to the adaptive immune response. Despite this prevalence, little is known about layilin's precise role in mediating extracellular interactions or how these interactions can be modulated in disease states. Here we take advantage of layilin's dependence on calcium ions to discover its interactions with highly glycosylated type II, IV, V, and VI collagens. Toward exploring layilin's role in disease, we exploited the Ca2+ dependence in a differential phage display strategy to engineer species cross-reactive antibodies that block this interaction.


Assuntos
Proteínas de Transporte , Glicoproteínas de Membrana , Proteínas de Transporte/metabolismo , Ligantes , Glicoproteínas de Membrana/genética , Talina/metabolismo
19.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35257663

RESUMO

Characterization of cell surface proteome differences between cancer and healthy cells is a valuable approach for the identification of novel diagnostic and therapeutic targets. However, selective sampling of surface proteins for proteomics requires large samples (>10e6 cells) and long labeling times. These limitations preclude analysis of material-limited biological samples or the capture of rapid surface proteomic changes. Here, we present two labeling approaches to tether exogenous peroxidases (APEX2 and HRP) directly to cells, enabling rapid, small-scale cell surface biotinylation without the need to engineer cells. We used a novel lipidated DNA-tethered APEX2 (DNA-APEX2), which upon addition to cells promoted cell agnostic membrane-proximal labeling. Alternatively, we employed horseradish peroxidase (HRP) fused to the glycan-binding domain of wheat germ agglutinin (WGA-HRP). This approach yielded a rapid and commercially inexpensive means to directly label cells containing common N-Acetylglucosamine (GlcNAc) and sialic acid glycans on their surface. The facile WGA-HRP method permitted high surface coverage of cellular samples and enabled the first comparative surface proteome characterization of cells and cell-derived small extracellular vesicles (EVs), leading to the robust quantification of 953 cell and EV surface annotated proteins. We identified a newly recognized subset of EV-enriched markers, as well as proteins that are uniquely upregulated on Myc oncogene-transformed prostate cancer EVs. These two cell-tethered enzyme surface biotinylation approaches are highly advantageous for rapidly and directly labeling surface proteins across a range of material-limited sample types.


Assuntos
Vesículas Extracelulares , Proteômica , Peroxidase do Rábano Silvestre , Humanos , Masculino , Proteoma/análise , Aglutininas do Germe de Trigo
20.
ACS Cent Sci ; 8(10): 1447-1456, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36313159

RESUMO

Proteolytic cleavage of cell surface proteins triggers critical processes including cell-cell interactions, receptor activation, and shedding of signaling proteins. Consequently, dysregulated extracellular proteases contribute to malignant cell phenotypes including most cancers. To understand these effects, methods are needed that identify proteolyzed membrane proteins within diverse cellular contexts. Herein we report a proteomic approach, called cell surface N-terminomics, to broadly identify precise cleavage sites (neo-N-termini) on the surface of living cells. First, we functionalized the engineered peptide ligase, called stabiligase, with an N-terminal nucleophile that enables covalent attachment to naturally occurring glycans. Upon the addition of a biotinylated peptide ester, glycan-tethered stabiligase efficiently tags extracellular neo-N-termini for proteomic analysis. To demonstrate the versatility of this approach, we identified and characterized 1532 extracellular neo-N-termini across a panel of different cell types including primary immune cells. The vast majority of cleavages were not identified by previous proteomic studies. Lastly, we demonstrated that single oncogenes, KRAS(G12V) and HER2, induce extracellular proteolytic remodeling of proteins involved in cancerous cell growth, invasion, and migration. Cell surface N-terminomics is a generalizable platform that can reveal proteolyzed, neoepitopes to target using immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA