Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO Rep ; 21(10): e49585, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32945072

RESUMO

Most proteins in cell and tissue lysates are soluble. We show here that in lysate from human neurons, more than 1,300 proteins are maintained in a soluble and functional state by association with endogenous RNA, as degradation of RNA invariably leads to protein aggregation. The majority of these proteins lack conventional RNA-binding domains. Using synthetic oligonucleotides, we identify the importance of nucleic acid structure, with single-stranded pyrimidine-rich bulges or loops surrounded by double-stranded regions being particularly efficient in the maintenance of protein solubility. These experiments also identify an apparent one-to-one protein-nucleic acid stoichiometry. Furthermore, we show that protein aggregates isolated from brain tissue from Amyotrophic Lateral Sclerosis patients can be rendered soluble after refolding by both RNA and synthetic oligonucleotides. Together, these findings open new avenues for understanding the mechanism behind protein aggregation and shed light on how certain proteins remain soluble.


Assuntos
Esclerose Lateral Amiotrófica , RNA , Proteínas de Ligação a DNA , Humanos , Neurônios , Agregados Proteicos , RNA/genética
2.
Hum Mol Genet ; 28(R2): R151-R161, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31411675

RESUMO

High blood pressure (BP) remains the major heritable and modifiable risk factor for cardiovascular disease. Persistent high BP, or hypertension, is a complex trait with both genetic and environmental interactions. Despite swift advances in genomics, translating new discoveries to further our understanding of the underlying molecular mechanisms remains a challenge. More than 500 loci implicated in the regulation of BP have been revealed by genome-wide association studies (GWAS) in 2018 alone, taking the total number of BP genetic loci to over 1000. Even with the large number of loci now associated to BP, the genetic variance explained by all loci together remains low (~5.7%). These genetic associations have elucidated mechanisms and pathways regulating BP, highlighting potential new therapeutic and drug repurposing targets. A large proportion of the BP loci were discovered and reported simultaneously by multiple research groups, creating a knowledge gap, where the reported loci to date have not been investigated in a harmonious way. Here, we review the BP-associated genetic variants reported across GWAS studies and investigate their potential impact on the biological systems using in silico enrichment analyses for pathways, tissues, gene ontology and genetic pleiotropy.


Assuntos
Pressão Sanguínea/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hipertensão/genética , Animais , Ontologia Genética , Loci Gênicos , Pleiotropia Genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Risco , Software
3.
Hum Mol Genet ; 28(8): 1357-1368, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30608578

RESUMO

The initiation of puberty is orchestrated by an augmentation of gonadotropin-releasing hormone (GnRH) secretion from a few thousand hypothalamic neurons. Recent findings have indicated that the neuroendocrine control of puberty may be regulated by a hierarchically organized network of transcriptional factors acting upstream of GnRH. These include enhanced at puberty 1 (EAP1), which contributes to the initiation of female puberty through transactivation of the GnRH promoter. However, no EAP1 mutations have been found in humans with disorders of pubertal timing. We performed whole-exome sequencing in 67 probands and 93 relatives from a large cohort of familial self-limited delayed puberty (DP). Variants were analyzed for rare, potentially pathogenic variants enriched in case versus controls and relevant to the biological control of puberty. We identified one in-frame deletion (Ala221del) and one rare missense variant (Asn770His) in EAP1 in two unrelated families; these variants were highly conserved and potentially pathogenic. Expression studies revealed Eap1 mRNA abundance in peri-pubertal mouse hypothalamus. EAP1 binding to the GnRH1 promoter increased in monkey hypothalamus at the onset of puberty as determined by chromatin immunoprecipitation. Using a luciferase reporter assay, EAP1 mutants showed a reduced ability to trans-activate the GnRH promoter compared to wild-type EAP1, due to reduced protein levels caused by the Ala221del mutation and subcellular mislocation caused by the Asn770His mutation, as revealed by western blot and immunofluorescence, respectively. In conclusion, we have identified the first EAP1 mutations leading to reduced GnRH transcriptional activity resulting in a phenotype of self-limited DP.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Puberdade Tardia/genética , Securina/genética , Adolescente , Adulto , Animais , Criança , Feminino , Regulação da Expressão Gênica/genética , Hormônio Liberador de Gonadotropina/genética , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Puberdade/genética , Puberdade/fisiologia , RNA Mensageiro/genética , Securina/fisiologia , Maturidade Sexual/genética , Transativadores/genética , Fatores de Transcrição/genética , Sequenciamento do Exoma , Adulto Jovem
4.
J Intern Med ; 290(6): 1130-1152, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34166551

RESUMO

Essential hypertension is a complex trait where the underlying aetiology is not completely understood. Left untreated it increases the risk of severe health complications including cardiovascular and renal disease. It is almost 15 years since the first genome-wide association study for hypertension, and after a slow start there are now over 1000 blood pressure (BP) loci explaining ∼6% of the single nucleotide polymorphism-based heritability. Success in discovery of hypertension genes has provided new pathological insights and drug discovery opportunities and translated to the development of BP genetic risk scores (GRSs), facilitating population disease risk stratification. Comparing highest and lowest risk groups shows differences of 12.9 mm Hg in systolic-BP with significant differences in risk of hypertension, stroke, cardiovascular disease and myocardial infarction. GRSs are also being trialled in antihypertensive drug responses. Drug targets identified include NPR1, for which an agonist drug is currently in clinical trials. Identification of variants at the PHACTR1 locus provided insights into regulation of EDN1 in the endothelin pathway, which is aiding the development of endothelin receptor EDNRA antagonists. Drug re-purposing opportunities, including SLC5A1 and canagliflozin (a type-2 diabetes drug), are also being identified. In this review, we present key studies from the past, highlight current avenues of research and look to the future focusing on gene discovery, epigenetics, gene-environment interactions, GRSs and drug discovery. We evaluate limitations affecting BP genetics, including ancestry bias and discuss streamlining of drug target discovery and applications for treating and preventing hypertension, which will contribute to tailored precision medicine for patients.


Assuntos
Hipertensão , Infarto do Miocárdio , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Infarto do Miocárdio/tratamento farmacológico , Polimorfismo de Nucleotídeo Único
5.
Circulation ; 140(16): 1318-1330, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554410

RESUMO

BACKGROUND: The genetic basis of left ventricular (LV) image-derived phenotypes, which play a vital role in the diagnosis, management, and risk stratification of cardiovascular diseases, is unclear at present. METHODS: The LV parameters were measured from the cardiovascular magnetic resonance studies of the UK Biobank. Genotyping was done using Affymetrix arrays, augmented by imputation. We performed genome-wide association studies of 6 LV traits-LV end-diastolic volume, LV end-systolic volume, LV stroke volume, LV ejection fraction, LV mass, and LV mass to end-diastolic volume ratio. The replication analysis was performed in the MESA study (Multi-Ethnic Study of Atherosclerosis). We identified the candidate genes at genome-wide significant loci based on the evidence from extensive bioinformatic analyses. Polygenic risk scores were constructed from the summary statistics of LV genome-wide association studies to predict the heart failure events. RESULTS: The study comprised 16 923 European UK Biobank participants (mean age 62.5 years; 45.8% men) without prevalent myocardial infarction or heart failure. We discovered 14 genome-wide significant loci (3 loci each for LV end-diastolic volume, LV end-systolic volume, and LV mass to end-diastolic volume ratio; 4 loci for LV ejection fraction, and 1 locus for LV mass) at a stringent P<1×10-8. Three loci were replicated at Bonferroni significance and 7 loci at nominal significance (P<0.05 with concordant direction of effect) in the MESA study (n=4383). Follow-up bioinformatic analyses identified 28 candidate genes that were enriched in the cardiac developmental pathways and regulation of the LV contractile mechanism. Eight genes (TTN, BAG3, GRK5, HSPB7, MTSS1, ALPK3, NMB, and MMP11) supported by at least 2 independent lines of in silico evidence were implicated in the cardiac morphogenesis and heart failure development. The polygenic risk scores of LV phenotypes were predictive of heart failure in a holdout UK Biobank sample of 3106 cases and 224 134 controls (odds ratio 1.41, 95% CI 1.26 - 1.58, for the top quintile versus the bottom quintile of the LV end-systolic volume risk score). CONCLUSIONS: We report 14 genetic loci and indicate several candidate genes that not only enhance our understanding of the genetic architecture of prognostically important LV phenotypes but also shed light on potential novel therapeutic targets for LV remodeling.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/patologia , Ventrículos do Coração/diagnóstico por imagem , Coração/crescimento & desenvolvimento , Morfogênese/genética , Idoso , Feminino , Loci Gênicos , Genótipo , Insuficiência Cardíaca/genética , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Função Ventricular Esquerda , Remodelação Ventricular
6.
Physiol Genomics ; 51(8): 323-332, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31172864

RESUMO

Atrial fibrillation is a significant worldwide contributor to cardiovascular morbidity and mortality. Few studies have investigated the differences in gene expression between the left and right atrial appendages, leaving their characterization largely unexplored. In this study, differential gene expression was investigated in atrial fibrillation and sinus rhythm using left and right atrial appendages from the same patients. RNA sequencing was performed on the left and right atrial appendages from five sinus rhythm (SR) control patients and five permanent AF case patients. Differential gene expression in both the left and right atrial appendages was analyzed using the Bioconductor package edgeR. A selection of differentially expressed genes, with relevance to atrial fibrillation, were further validated using quantitative RT-PCR. The distribution of the samples assessed through principal component analysis showed distinct grouping between left and right atrial appendages and between SR controls and AF cases. Overall 157 differentially expressed genes were identified to be downregulated and 90 genes upregulated in AF. Pathway enrichment analysis indicated a greater involvement of left atrial genes in the Wnt signaling pathway whereas right atrial genes were involved in clathrin-coated vesicle and collagen formation. The differing expression of genes in both left and right atrial appendages indicate that there are different mechanisms for development, support and remodeling of AF within the left and right atria.


Assuntos
Apêndice Atrial/fisiopatologia , Fibrilação Atrial/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/patologia , Vesículas Revestidas por Clatrina/metabolismo , Estudos de Coortes , Colágeno/metabolismo , Ponte de Artéria Coronária , Regulação para Baixo/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Regulação para Cima/genética , Via de Sinalização Wnt/genética
7.
Hum Mol Genet ; 26(12): 2346-2363, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28379579

RESUMO

Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.


Assuntos
Frequência Cardíaca/genética , Adulto , Alelos , Exoma , Feminino , Frequência do Gene/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , População Branca/genética
8.
Appl Microbiol Biotechnol ; 103(14): 5831-5841, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115628

RESUMO

In coffee-producing countries, waste products from coffee production are useful substrates for cultivation of Pleurotus ostreatus. This species is relatively easy to grow, coffee waste substrates are readily available and the mushroom fruiting bodies are a valuable source of nutrition and income. In developed countries, cultivation of P. ostreatus on spent coffee grounds (SCG) from coffee consumption is a novel way to recycle this urban waste product. Here, we studied the effect of SCG and caffeine on growth of a commercial strain of P. ostreatus in liquid and solid cultures, and on a commercial scale. The presence of caffeine inhibited mycelial growth on agar and in liquid culture in the laboratory. Increased levels of SCG in an SCG/sawdust substrate also delayed mycelial growth and delayed or prevented fruiting during commercial cultivation. Despite growth inhibition, partial degradation of caffeine to xanthine by P. ostreatus mycelium was observed in all SCG-containing substrate mixtures. Degradation of caffeine proceeded mainly via sequential N-demethylation to theophylline (1,3-dimethylxanthine) and 3-methylxanthine, although both paraxanthine and theobromine also accumulated in the substrate. Caffeine and its demethylated metabolites were also detected in fruiting bodies, but it was not clear whether caffeine metabolism occurred in the fruiting bodies themselves or whether caffeine metabolites were translocated there from the mycelium. Based on the caffeine concentrations measured in fruiting bodies after growth with SCG, it would be necessary to consume ~ 250 kg of fresh oyster mushrooms to obtain the amount of caffeine equivalent to one cup of espresso coffee, suggesting that the health impact of caffeine in these mushrooms is low. However, the ability of P. ostreatus to degrade caffeine indicates that this and other species in this genus may have potential applications in detoxification of coffee production wastes.


Assuntos
Cafeína/metabolismo , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Resíduos/análise , Café/química , Meios de Cultura/química , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Microbiologia Industrial , Resíduos Industriais/análise , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Xantina/metabolismo
10.
PLoS Med ; 14(7): e1002352, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715416

RESUMO

BACKGROUND: Severe trauma induces a widespread response of the immune system. This "genomic storm" can lead to poor outcomes, including Multiple Organ Dysfunction Syndrome (MODS). MODS carries a high mortality and morbidity rate and adversely affects long-term health outcomes. Contemporary management of MODS is entirely supportive, and no specific therapeutics have been shown to be effective in reducing incidence or severity. The pathogenesis of MODS remains unclear, and several models are proposed, such as excessive inflammation, a second-hit insult, or an imbalance between pro- and anti-inflammatory pathways. We postulated that the hyperacute window after trauma may hold the key to understanding how the genomic storm is initiated and may lead to a new understanding of the pathogenesis of MODS. METHODS AND FINDINGS: We performed whole blood transcriptome and flow cytometry analyses on a total of 70 critically injured patients (Injury Severity Score [ISS] ≥ 25) at The Royal London Hospital in the hyperacute time period within 2 hours of injury. We compared transcriptome findings in 36 critically injured patients with those of 6 patients with minor injuries (ISS ≤ 4). We then performed flow cytometry analyses in 34 critically injured patients and compared findings with those of 9 healthy volunteers. Immediately after injury, only 1,239 gene transcripts (4%) were differentially expressed in critically injured patients. By 24 hours after injury, 6,294 transcripts (21%) were differentially expressed compared to the hyperacute window. Only 202 (16%) genes differentially expressed in the hyperacute window were still expressed in the same direction at 24 hours postinjury. Pathway analysis showed principally up-regulation of pattern recognition and innate inflammatory pathways, with down-regulation of adaptive responses. Immune deconvolution, flow cytometry, and modular analysis suggested a central role for neutrophils and Natural Killer (NK) cells, with underexpression of T- and B cell responses. In the transcriptome cohort, 20 critically injured patients later developed MODS. Compared with the 16 patients who did not develop MODS (NoMODS), maximal differential expression was seen within the hyperacute window. In MODS versus NoMODS, 363 genes were differentially expressed on admission, compared to only 33 at 24 hours postinjury. MODS transcripts differentially expressed in the hyperacute window showed enrichment among diseases and biological functions associated with cell survival and organismal death rather than inflammatory pathways. There was differential up-regulation of NK cell signalling pathways and markers in patients who would later develop MODS, with down-regulation of neutrophil deconvolution markers. This study is limited by its sample size, precluding more detailed analyses of drivers of the hyperacute response and different MODS phenotypes, and requires validation in other critically injured cohorts. CONCLUSIONS: In this study, we showed how the hyperacute postinjury time window contained a focused, specific signature of the response to critical injury that led to widespread genomic activation. A transcriptomic signature for later development of MODS was present in this hyperacute window; it showed a strong signal for cell death and survival pathways and implicated NK cells and neutrophil populations in this differential response.


Assuntos
Inflamação/imunologia , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/terapia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/terapia , Doença Aguda , Adulto , Análise Química do Sangue , Feminino , Citometria de Fluxo , Humanos , Inflamação/sangue , Inflamação/etiologia , Inflamação/terapia , Londres , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/imunologia , Estudos Prospectivos , Fatores de Tempo , Transcriptoma , Ferimentos e Lesões/sangue , Ferimentos e Lesões/imunologia
11.
Ann Surg ; 265(2): 408-417, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28059970

RESUMO

OBJECTIVE: To evaluate the effects of artesunate on organ injury and dysfunction associated with hemorrhagic shock (HS) in the rat. BACKGROUND: HS is still a common cause of death in severely injured patients and is characterized by impairment of organ perfusion, systemic inflammatory response, and multiple organ failure. There is no specific therapy that reduces organ injury/dysfunction. Artesunate exhibits pharmacological actions beyond its antimalarial activity, such as anticancer, antiviral, and anti-inflammatory effects. METHODS: Rats were submitted to HS. Mean arterial pressure was reduced to 30 mm Hg for 90 minutes, followed by resuscitation. Rats were randomly treated with artesunate (2.4 or 4.8 mg/kg i.v.) or vehicle upon resuscitation. Four hours later, parameters of organ injury and dysfunction were assessed. RESULTS: Artesunate attenuated the multiple organ injury and dysfunction caused by HS. Pathway analysis of RNA sequencing provided good evidence to support an effect of artesunate on the Akt-survival pathway, leading to downregulation of interleukin-1 receptor-associated kinase 1. Using Western blot analysis, we confirmed that treatment of HS rats with artesunate enhanced the phosphorylation (activation) of Protein kinase B (Akt) and endothelial nitric oxide synthase and the phosphorylation (inhibition) of glycogen synthase kinase-3ß (GSK-3ß). Moreover, artesunate attenuated the HS-induced activation of nuclear factor kappa B and reduced the expression of proinflammatory proteins (inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin 6). CONCLUSIONS: Artesunate attenuated the organ injury/dysfunction associated with HS by a mechanism that involves the activation of the Akt-endothelial nitric oxide synthase survival pathway, and the inhibition of glycogen synthase kinase-3ß and nuclear factor kappa B. A phase II clinical trial evaluating the effects of good manufacturing practice-artesunate in patients with trauma and severe hemorrhage is planned.


Assuntos
Artemisininas/uso terapêutico , Insuficiência de Múltiplos Órgãos/prevenção & controle , Substâncias Protetoras/uso terapêutico , Ressuscitação/efeitos adversos , Choque Hemorrágico/terapia , Animais , Artesunato , Biomarcadores/metabolismo , Terapia Combinada , Masculino , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Choque Hemorrágico/metabolismo , Resultado do Tratamento
12.
Artigo em Inglês | MEDLINE | ID: mdl-39258224

RESUMO

Artificial intelligence (AI) holds immense promise for accelerating and improving all aspects of drug discovery, not least target discovery and validation. By integrating a diverse range of biological data modalities, AI enables the accurate prediction of drug target properties, ultimately illuminating biological mechanisms of disease and guiding drug discovery strategies. Despite the indisputable potential of AI in drug target discovery, there are many challenges and obstacles yet to be overcome, including dealing with data biases, model interpretability and generalisability, and the validation of predicted drug targets, to name a few. By exploring recent advancements in AI, this review showcases current applications of AI for drug target discovery and offers perspectives on the future of AI for the discovery and validation of drug targets, paving the way for the generation of novel and safer pharmaceuticals.

13.
Nat Med ; 29(1): 190-202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646800

RESUMO

Primary aldosteronism (PA) due to a unilateral aldosterone-producing adenoma is a common cause of hypertension. This can be cured, or greatly improved, by adrenal surgery. However, the invasive nature of the standard pre-surgical investigation contributes to fewer than 1% of patients with PA being offered the chance of a cure. The primary objective of our prospective study of 143 patients with PA ( NCT02945904 ) was to compare the accuracy of a non-invasive test, [11C]metomidate positron emission tomography computed tomography (MTO) scanning, with adrenal vein sampling (AVS) in predicting the biochemical remission of PA and the resolution of hypertension after surgery. A total of 128 patients reached 6- to 9-month follow-up, with 78 (61%) treated surgically and 50 (39%) managed medically. Of the 78 patients receiving surgery, 77 achieved one or more PA surgical outcome criterion for success. The accuracies of MTO at predicting biochemical and clinical success following adrenalectomy were, respectively, 72.7 and 65.4%. For AVS, the accuracies were 63.6 and 61.5%. MTO was not significantly superior, but the differences of 9.1% (95% confidence interval = -6.5 to 24.1%) and 3.8% (95% confidence interval = -11.9 to 9.4) lay within the pre-specified -17% margin for non-inferiority (P = 0.00055 and P = 0.0077, respectively). Of 24 serious adverse events, none was considered related to either investigation and 22 were fully resolved. MTO enables non-invasive diagnosis of unilateral PA.


Assuntos
Hiperaldosteronismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/cirurgia , Glândulas Suprarrenais/irrigação sanguínea , Hiperaldosteronismo/diagnóstico por imagem , Hiperaldosteronismo/cirurgia , Estudos Prospectivos , Estudos Retrospectivos
14.
Nat Genet ; 55(6): 1009-1021, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291193

RESUMO

Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.


Assuntos
Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Hiperaldosteronismo , Hipertensão , Humanos , Aldosterona , Citocromo P-450 CYP11B2 , Junções Comunicantes , Mutação , Molécula 1 de Adesão Celular
15.
Hypertension ; 77(2): 284-295, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33390048

RESUMO

At the dawn of the new decade, it is judicious to reflect on the boom of knowledge about polygenic risk for essential hypertension supplied by the wealth of genome-wide association studies. Hypertension continues to account for significant cardiovascular morbidity and mortality, with increasing prevalence anticipated. Here, we overview recent advances in the use of big data to understand polygenic hypertension, as well as opportunities for future innovation to translate this windfall of knowledge into clinical benefit.


Assuntos
Predisposição Genética para Doença , Genômica , Hipertensão/genética , Estudo de Associação Genômica Ampla , Humanos , Anamnese
16.
NPJ Genom Med ; 6(1): 107, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930920

RESUMO

Developmental abnormalities of the gonadotropin-releasing hormone (GnRH) neuronal network result in a range of conditions from idiopathic hypogonadotropic hypogonadism to self-limited delayed puberty. We aimed to discover important underlying regulators of self-limited delayed puberty through interrogation of GnRH pathways. Whole exome sequencing (WES) data consisting of 193 individuals, from 100 families with self-limited delayed puberty, was analysed using a virtual panel of genes related to GnRH development and function (n = 12). Five rare predicted deleterious variants in Coiled-Coil Domain Containing 141 (CCDC141) were identified in 21 individuals from 6 families (6% of the tested cohort). Homology modeling predicted all five variants to be deleterious. CCDC141 mutant proteins showed atypical subcellular localization associated with abnormal distribution of acetylated tubulin, and expression of mutants resulted in a significantly delayed cell migration, demonstrated in transfected HEK293 cells. These data identify mutations in CCDC141 as a frequent finding in patients with self-limited delayed puberty. The mis-localization of acetylated tubulin and reduced cell migration seen with mutant CCDC141 suggests a role of the CCDC141-microtubule axis in GnRH neuronal migration, with heterozygous defects potentially impacting the timing of puberty.

17.
Nat Genet ; 53(9): 1360-1372, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34385710

RESUMO

Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Adenoma Adrenocortical/genética , Aldosterona/biossíntese , Subunidades alfa de Proteínas de Ligação ao GTP/genética , beta Catenina/genética , Adolescente , Neoplasias do Córtex Suprarrenal/patologia , Adenoma Adrenocortical/patologia , Adulto , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Hiperaldosteronismo/patologia , Masculino , Menopausa/metabolismo , Pessoa de Meia-Idade , Gravidez , Puberdade/metabolismo
18.
Nat Genet ; 53(6): 840-860, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34059833

RESUMO

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.


Assuntos
Glicemia/genética , Característica Quantitativa Herdável , População Branca/genética , Alelos , Epigênese Genética , Perfilação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Hemoglobinas Glicadas/metabolismo , Humanos , Herança Multifatorial/genética , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas/genética
19.
Front Genet ; 11: 350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351543

RESUMO

Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS - the ability to detect genetic association by linkage disequilibrium (LD) - is also its limitation. Whilst the ever-increasing study size and improved design have augmented the power of GWAS to detect effects, differentiation of causal variants or genes from other highly correlated genes associated by LD remains the real challenge. This has severely hindered the biological insights and clinical translation of GWAS findings. Although thousands of disease susceptibility loci have been reported, causal genes at these loci remain elusive. Machine learning (ML) techniques offer an opportunity to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from relatively simple logistic regression approaches to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models, i.e., neural networks. Paired with functional validation, these methods show important promise for clinical translation, providing a strong evidence-based approach to direct post-GWAS research. However, as ML approaches continue to evolve to meet the challenge of causal gene identification, a critical assessment of the underlying methodologies and their applicability to the GWAS prioritization problem is needed. This review investigates the landscape of ML applications in three parts: selected models, input features, and output model performance, with a focus on prioritizations of complex disease associated loci. Overall, we explore the contributions ML has made towards reaching the GWAS end-game with consequent wide-ranging translational impact.

20.
Eur J Endocrinol ; 183(6): 581-595, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33055295

RESUMO

OBJECTIVE: Copy number variation (CNV) has been associated with idiopathic short stature, small for gestational age and Silver-Russell syndrome (SRS). It has not been extensively investigated in growth hormone insensitivity (GHI; short stature, IGF-1 deficiency and normal/high GH) or previously in IGF-1 insensitivity (short stature, high/normal GH and IGF-1). DESIGN AND METHODS: Array comparative genomic hybridisation was performed with ~60 000 probe oligonucleotide array in GHI (n = 53) and IGF-1 insensitivity (n = 10) subjects. Published literature, mouse models, DECIPHER CNV tracks, growth associated GWAS loci and pathway enrichment analyses were used to identify key biological pathways/novel candidate growth genes within the CNV regions. RESULTS: Both cohorts were enriched for class 3-5 CNVs (7/53 (13%) GHI and 3/10 (30%) IGF-1 insensitivity patients). Interestingly, 6/10 (60%) CNV subjects had diagnostic/associated clinical features of SRS. 5/10 subjects (50%) had CNVs previously reported in suspected SRS: 1q21 (n = 2), 12q14 (n = 1) deletions and Xp22 (n = 1), Xq26 (n = 1) duplications. A novel 15q11 deletion, previously associated with growth failure but not SRS/GHI was identified. Bioinformatic analysis identified 45 novel candidate growth genes, 15 being associated with growth in GWAS. The WNT canonical pathway was enriched in the GHI cohort and CLOCK was identified as an upstream regulator in the IGF-1 insensitivity cohorts. CONCLUSIONS: Our cohort was enriched for low frequency CNVs. Our study emphasises the importance of CNV testing in GHI and IGF-1 insensitivity patients, particularly GHI subjects with SRS features. Functional experimental evidence is now required to validate the novel candidate growth genes, interactions and biological pathways identified.


Assuntos
Variações do Número de Cópias de DNA/genética , Testes Genéticos/métodos , Hormônio do Crescimento Humano/genética , Fator de Crescimento Insulin-Like I/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Hormônio do Crescimento Humano/sangue , Humanos , Lactente , Fator de Crescimento Insulin-Like I/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA