Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Environ Microbiol ; 25(12): 3364-3386, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897125

RESUMO

Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.


Assuntos
Euryarchaeota , Microbiota , Microbiota/genética , Euryarchaeota/genética , Áreas Alagadas , Solo/química , Metano
2.
Environ Sci Technol ; 50(1): 338-48, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26651080

RESUMO

Microbial communities have a key role for the performance of engineered ecosystems such as waste gas biofilters. Maintaining constant performance despite fluctuating environmental conditions is of prime interest, but it is highly challenging because the mechanisms that drive the response of microbial communities to disturbances still have to be disentangled. Here we demonstrate that the bioprocess performance and stability can be improved and reinforced in the face of disturbances, through a rationally predefined strategy of microbial resource management (MRM). This strategy was experimentally validated in replicated pilot-scale nitrifying gas-biofilters, for the two steps of nitrification. The associated biological mechanisms were unraveled through analysis of functions, abundances and community compositions for the major actors of nitrification in these biofilters, that is, ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nitrite-oxidizers (NOB). Our MRM strategy, based on the application of successive, transient perturbations of increasing intensity, enabled to steer the nitrifier community in a favorable way through the selection of more resistant AOB and NOB sharing functional gene sequences close to those of, respectively, Nitrosomonas eutropha and Nitrobacter hamburgensis that are well adapted to high N load. The induced community shifts resulted in significant enhancement of nitrification resilience capacity following the intense perturbation.


Assuntos
Ecossistema , Consórcios Microbianos , Nitritos/metabolismo , Nitrobacter/metabolismo , Nitrosomonas/metabolismo , Amônia/metabolismo , Nitrificação
3.
Appl Microbiol Biotechnol ; 100(7): 3371-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26825820

RESUMO

To provide new insight into the dark fermentation process, a multi-lateral study was performed to study the microbiology of 20 different lab-scale bioreactors operated in four different countries (Brazil, Chile, Mexico, and Uruguay). Samples (29) were collected from bioreactors with different configurations, operation conditions, and performances. The microbial communities were analyzed using 16S rRNA genes 454 pyrosequencing. The results showed notably uneven communities with a high predominance of a particular genus. The phylum Firmicutes predominated in most of the samples, but the phyla Thermotogae or Proteobacteria dominated in a few samples. Genera from three physiological groups were detected: high-yield hydrogen producers (Clostridium, Kosmotoga, Enterobacter), fermenters with low-hydrogen yield (mostly from Veillonelaceae), and competitors (Lactobacillus). Inocula, reactor configurations, and substrates influence the microbial communities. This is the first joint effort that evaluates hydrogen-producing reactors and operational conditions from different countries and contributes to understand the dark fermentation process.


Assuntos
Reatores Biológicos/normas , Fermentação , Hidrogênio/metabolismo , Consórcios Microbianos/genética , RNA Ribossômico 16S/genética , Anaerobiose , Clostridium/classificação , Clostridium/genética , Clostridium/metabolismo , Enterobacter/classificação , Enterobacter/genética , Enterobacter/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/metabolismo , América Latina , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/metabolismo , Thermotoga maritima/classificação , Thermotoga maritima/genética , Thermotoga maritima/metabolismo , Veillonellaceae/classificação , Veillonellaceae/genética , Veillonellaceae/metabolismo
4.
Water Sci Technol ; 71(12): 1790-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26067498

RESUMO

The effect of phenylacetic acid (PAA) pulses on anaerobic digestion (AD) performance and archaeal community structure was evaluated in anaerobic digesters treating sewage sludge from a wastewater treatment plant (WWTP). Four pilot-scale continuous stirred tank reactors were set up at a full-scale municipal WWTP in Santiago de Chile, and fed with either primary or mixed sewage sludge. AD performance was evaluated by volatile fatty acid (VFA) and biogas production monitoring. Archaeal community structure was characterized by 16S rRNA denaturing gradient gel electrophoresis and band sequencing. In the primary sludge digester, a single PAA pulse at 200 mg L(-1) was sufficient to affect AD performance and archaeal community structure, resulting in long-term VFA accumulation, reduced biogas production and community shift from dominant acetoclastic (Methanosaeta concilii) to hydrogenotrophic (Methanospirillum hungatei) methanogens. By contrast, AD performance and archaeal community structure in the mixed sludge digester were stable and resistant to repeated PAA pulses at 200 and 600 mg L(-1). This work demonstrated that the effect of PAA pulses on methanogenic activity and archaeal community structure differed according to AD substrate, and suggests that better insights of the correlations between archaeal population dynamics and functional performance could help to better face toxic shocks in AD.


Assuntos
Archaea/classificação , Reatores Biológicos , Fenilacetatos/farmacologia , Esgotos/química , Anaerobiose , Archaea/genética , Chile , Ácidos Graxos Voláteis , Fenilacetatos/química , RNA Arqueal/classificação , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
5.
Water Sci Technol ; 69(3): 511-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552721

RESUMO

Molecular biology techniques provide valuable insights in the investigation of microbial dynamics and evolution. Denaturing gradient gel electrophoresis (DGGE) analysis is one of the most popular methods which have been used in bioprocess assessment. Most of the anaerobic digestion models consider several microbial populations as state variables. However, the difficulty of measuring individual species concentrations may cause inaccurate model predictions. The integration of microbial data and ecosystem modelling is currently a challenging issue for improved system control. A novel procedure that combines common experimental measurements, DGGE, and image analysis is presented in this study in order to provide a preliminary estimation of the actual concentration of the dominant bacterial ribotypes in a bioreactor, for further use as a variable in mathematical modelling of the bioprocess. This approach was applied during the start-up of a continuous anaerobic bioreactor for hydrogen production. The experimental concentration data were used for determining the kinetic parameters of each species, by using a multi-species chemostat-model. The model was able to reproduce the global trend of substrate and biomass concentrations during the reactor start-up, and predicted in an acceptable way the evolution of each ribotype concentration, depicting properly specific ribotype selection and extinction.


Assuntos
Reatores Biológicos/microbiologia , Eletroforese em Gel de Gradiente Desnaturante , Modelos Biológicos , Ribotipagem , Hidrogênio/metabolismo , Consórcios Microbianos
6.
Microbiol Spectr ; 12(4): e0383023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441978

RESUMO

Understanding the factors that sculpt fish gut microbiome is challenging, especially in natural populations characterized by high environmental and host genomic complexity. However, closely related hosts are valuable models for deciphering the contribution of host evolutionary history to microbiome assembly, through the underscoring of phylosymbiosis and co-phylogeny patterns. Here, we propose that the recent diversification of several Harpagifer species across the Southern Ocean would allow the detection of robust phylogenetic congruence between the host and its microbiome. We characterized the gut mucosa microbiome of 77 individuals from four field-collected species of the plunderfish Harpagifer (Teleostei, Notothenioidei), distributed across three biogeographic regions of the Southern Ocean. We found that seawater physicochemical properties, host phylogeny, and geography collectively explained 35% of the variation in bacterial community composition in Harpagifer gut mucosa. The core microbiome of Harpagifer spp. gut mucosa was characterized by a low diversity, mostly driven by selective processes, and dominated by a single Aliivibrio Operational Taxonomic Unit (OTU) detected in more than 80% of the individuals. Nearly half of the core microbiome taxa, including Aliivibrio, harbored co-phylogeny signal at microdiversity resolution with host phylogeny, indicating an intimate symbiotic relationship and a shared evolutionary history with Harpagifer. The clear phylosymbiosis and co-phylogeny signals underscore the relevance of the Harpagifer model in understanding the role of fish evolutionary history in shaping the gut microbiome assembly. We propose that the recent diversification of Harpagifer may have led to the diversification of Aliivibrio, exhibiting patterns that mirror the host phylogeny. IMPORTANCE: Although challenging to detect in wild populations, phylogenetic congruence between marine fish and its microbiome is critical, as it highlights intimate associations between hosts and ecologically relevant microbial symbionts. Our study leverages a natural system of closely related fish species in the Southern Ocean to unveil new insights into the contribution of host evolutionary trajectory on gut microbiome assembly, an underappreciated driver of the global marine fish holobiont. Notably, we unveiled striking evidence of co-diversification between Harpagifer and its microbiome, demonstrating both phylosymbiosis of gut bacterial communities and co-phylogeny of some specific bacterial symbionts, mirroring the host diversification patterns. Given Harpagifer's significance as a trophic resource in coastal areas and its vulnerability to climatic and anthropic pressures, understanding the potential evolutionary interdependence between the hosts and its microbiome provides valuable microbial candidates for future monitoring, as they may play a pivotal role in host species acclimatization to a rapidly changing environment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Perciformes , Animais , Filogenia , Microbioma Gastrointestinal/genética , Evolução Biológica , Peixes/genética , Bactérias/genética , Oceanos e Mares , RNA Ribossômico 16S/genética
7.
Sci Total Environ ; 912: 168562, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981135

RESUMO

Although the Antarctic lakes are of great importance for the climate and the carbon cycle, the lithological influences on the input of elements that are necessary for phytoplankton in lakes have so far been insufficiently investigated. To address this issue, we analyzed phytoplankton cell concentrations and chemical compositions of water samples from lakes, ponds and a stream on Fildes and Ardley Islands of King George Island in the South Shetland Archipelago. Furthermore, lake sediments, as well as soil and rock samples collected from the littoral zone were analyzed for their mineralogical/petrographic composition and pollutant contents of polycyclic aromatic hydrocarbons (PAHs). In addition, leaching experiments were carried out to with the lithologic samples to investigate the possible changes in pH, alkalinity, macronutrients (N, P, Si), micronutrients (e.g. Fe, Zn, Cu, Mn), anions (S, F, Br), and other cations (e.g. Na, K, Mg, Ca, Al, Ti, V, Cr, Co, Ni, As, Se, Pb, Sb, Mo, Ag, Cd, Sn, Ba, Tl, B). Our results showed that phytoplankton levels varied between 15 and 206 cells/mL. Chlorophyll-a concentrations showed high correlations with NH4, NO3. The low levels of PO4 (<0.001 mg/L) indicated a possible P-limitation in the studied lakes. The composition of rock samples ranged from basalt to trachybasalt with variable major oxide (e.g. SiO2, Na2O and K2O) contents and consist mainly quartz, albite, calcite, dolomite and zeolite minerals. The concentrations of total PAHs were below the toxic threshold levels (9.55-131.25 ng g-1 dw). Leaching experiments with lithologic samples indicated major increase in pH (up to 9.77 ± 0.02) and nutrients, especially PO4 (1.03 ± 0.04 mg/L), indicating a strong P-fertilization impact in increased melting scenarios. Whereas, toxic elements such as Pb, Cu, Cd, Al and As were also released from the lithology, which may reduce the phytoplankton growth.

8.
iScience ; 27(8): 110348, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148714

RESUMO

Gut microbiome dysbiosis is linked to many neurological disorders including Alzheimer's disease (AD). A major risk factor for AD is polymorphism in the apolipoprotein E (APOE) gene, which affects gut microbiome composition. To explore the gut-brain axis in AD, long-lived animal models of naturally developing AD-like pathologies are needed. Octodon degus (degu) exhibit spontaneous AD-like symptoms and ApoE mutations, making them suitable for studying the interplay between AD genetic determinants and gut microbiome. We analyzed the association between APOE genotype and gut microbiome in 50 humans and 32 degu using16S rRNA gene amplicon sequencing. Significant associations were found between the degu ApoE mutation and gut microbial changes in degu, notably a depletion of Ruminococcaceae and Akkermansiaceae and an enrichment of Prevotellaceae, mirroring patterns seen in people with AD. The altered taxa were previously suggested to be involved in AD, validating the degu as an unconventional model for studying the AD/microbiome crosstalk.

9.
mSystems ; 8(4): e0053723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37578240

RESUMO

In the global context of seawater deoxygenation triggered by climate change and anthropogenic activities, changes in redox gradients impacting biogeochemical transformations of pollutants, such as mercury, become more likely. Being the largest anoxic basin worldwide, with high concentrations of the potent neurotoxic methylmercury (MeHg), the Black Sea is an ideal natural laboratory to provide new insights about the link between dissolved oxygen concentration and hgcAB gene-carrying (hgc+) microorganisms involved in the formation of MeHg. We combined geochemical and microbial approaches to assess the effect of vertical redox gradients on abundance, diversity, and metabolic potential of hgc+ microorganisms in the Black Sea water column. The abundance of hgcA genes [congruently estimated by quantitative PCR (qPCR) and metagenomics] correlated with MeHg concentration, both maximal in the upper part of the anoxic water. Besides the predominant Desulfobacterales, hgc+ microorganisms belonged to a unique assemblage of diverse-previously underappreciated-anaerobic fermenters from Anaerolineales, Phycisphaerae (characteristic of the anoxic and sulfidic zone), Kiritimatiellales, and Bacteroidales (characteristic of the suboxic zone). The metabolic versatility of Desulfobacterota differed from strict sulfate reduction in the anoxic water to reduction of various electron acceptors in the suboxic water. Linking microbial activity and contaminant concentration in environmental studies is rare due to the complexity of biological pathways. In this study, we disentangle the role of oxygen in shaping the distribution of Hg-methylating microorganisms consistently with MeHg concentration, and we highlight their taxonomic and metabolic niche partitioning across redox gradients, improving the prediction of the response of marine communities to the expansion of oxygen-deficient zones. IMPORTANCE Methylmercury (MeHg) is a neurotoxin detected at high concentrations in certain marine ecosystems, posing a threat to human health. MeHg production is mainly mediated by hgcAB gene-carrying (hgc+) microorganisms. Oxygen is one of the main factors controlling Hg methylation; however, its effect on the diversity and ecology of hgc+ microorganisms remains unknown. Under the current context of seawater deoxygenation, mercury cycling is expected to be disturbed. Here, we show the strong effect of oxygen gradients on the distribution of potential Hg methylators. In addition, we show for the first time the significant contribution of a unique assemblage of potential fermenters from Anaerolineales, Phycisphaerae, and Kiritimatiellales to Hg methylation, stratified in different redox niches along the Black Sea gradient. Our results considerably expand the known taxonomic diversity and ecological niches prone to the formation of MeHg and contribute to better apprehend the consequences of oxygen depletion in seawater.


Assuntos
Chloroflexi , Mercúrio , Compostos de Metilmercúrio , Humanos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Ecossistema , Água/análise , Mar Negro , Bactérias/genética , Chloroflexi/metabolismo , Oxirredução , Planctomicetos , Oxigênio/análise
10.
Mar Pollut Bull ; 189: 114765, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36898272

RESUMO

This paper looks at experiential feedback and the technical and scientific challenges tied to the MERITE-HIPPOCAMPE cruise that took place in the Mediterranean Sea in spring 2019. This cruise proposes an innovative approach to investigate the accumulation and transfer of inorganic and organic contaminants within the planktonic food webs. We present detailed information on how the cruise worked, including 1) the cruise track and sampling stations, 2) the overall strategy, based mainly on the collection of plankton, suspended particles and water at the deep chlorophyll maximum, and the separation of these particles and planktonic organisms into various size fractions, as well as the collection of atmospheric deposition, 3) the operations performed and material used at each station, and 4) the sequence of operations and main parameters analysed. The paper also provides the main environmental conditions that were prevailing during the campaign. Lastly, we present the types of articles produced based on work completed by the cruise that are part of this special issue.


Assuntos
Cadeia Alimentar , Plâncton , Mar Mediterrâneo , Estações do Ano , Oceanografia
11.
Sci Total Environ ; 848: 157485, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35870597

RESUMO

Freshwater ecosystems are important contributors to the global greenhouse gas budget and a comprehensive assessment of their role in the context of global warming is essential. Despite many reports on freshwater ecosystems, relatively little attention has been given so far to those located in the southern hemisphere and our current knowledge is particularly poor regarding the methane cycle in non-perennially glaciated lakes of the maritime Antarctica. We conducted a high-resolution study of the methane and carbon dioxide cycle in a lake of the Fildes Peninsula, King George Island (Lat. 62°S), and a succinct characterization of 10 additional lakes and ponds of the region. The study, done during the ice-free and the ice-seasons, included methane and carbon dioxide exchanges with the atmosphere (both from water and surrounding soils) and the dissolved concentration of these two gases throughout the water column. This characterization was complemented with an ex-situ analysis of the microbial activities involved in the methane cycle, including methanotrophic and methanogenic activities as well as the methane-related marker gene abundance, in water, sediments and surrounding soils. The results showed that, over an annual cycle, the freshwater ecosystems of the region are dominantly autotrophic and that, despite low but omnipresent atmospheric methane emissions, they act as greenhouse gas sinks.


Assuntos
Gases de Efeito Estufa , Lagos , Regiões Antárticas , Dióxido de Carbono/análise , Ecossistema , Gases/análise , Gases de Efeito Estufa/análise , Lagos/análise , Metano/análise , Solo , Água/análise
12.
Sci Data ; 9(1): 674, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333353

RESUMO

High latitudes are experiencing intense ecosystem changes with climate warming. The underlying methane (CH4) cycling dynamics remain unresolved, despite its crucial climatic feedback. Atmospheric CH4 emissions are heterogeneous, resulting from local geochemical drivers, global climatic factors, and microbial production/consumption balance. Holistic studies are mandatory to capture CH4 cycling complexity. Here, we report a large set of integrated microbial and biogeochemical data from 387 samples, using a concerted sampling strategy and experimental protocols. The study followed international standards to ensure inter-comparisons of data amongst three high-latitude regions: Alaska, Siberia, and Patagonia. The dataset encompasses different representative environmental features (e.g. lake, wetland, tundra, forest soil) of these high-latitude sites and their respective heterogeneity (e.g. characteristic microtopographic patterns). The data included physicochemical parameters, greenhouse gas concentrations and emissions, organic matter characterization, trace elements and nutrients, isotopes, microbial quantification and composition. This dataset addresses the need for a robust physicochemical framework to conduct and contextualize future research on the interactions between climate change, biogeochemical cycles and microbial communities at high-latitudes.


Assuntos
Gases de Efeito Estufa , Microbiota , Dióxido de Carbono/análise , Metano/análise , Solo , Áreas Alagadas
13.
Appl Microbiol Biotechnol ; 90(3): 837-49, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21424795

RESUMO

Biofilters are packed-bed bioreactors where contaminants, once transferred from the gas phase to the biofilm, are oxidized by diverse and complex communities of attached microorganisms. Over the last decade, more and more studies aimed at opening the back box of biofiltration by unraveling the biodiversity-ecosystem function relationship. In this review, we report the insights provided by the microbial ecology approach in biofilters and we emphasize the parallels existing with other engineered ecosystems used for wastewater treatment, as they all constitute relevant model ecosystems to explore ecological issues. We considered three characteristic ecological indicators: the density, the diversity, and the structure of the microbial community. Special attention was paid to the temporal and spatial dynamics of each indicator, insofar as it can disclose the potential relationship, or absence of relation, with any operating or functional parameter. We also focused on the impact of disturbance regime on the microbial community structure, in terms of resistance, resilience, and memory. This literature review led to mitigated conclusions in terms of biodiversity-ecosystem function relationship. Depending on the environmental system itself and the way it is investigated, the spatial and temporal dynamics of the microbial community can be either correlated (e.g., spatial stratification) or uncoupled (e.g., temporal instability) to the ecosystem function. This lack of generality shows the limits of current 16S approach in complex ecosystems, where a functional approach may be more suitable.


Assuntos
Bactérias/metabolismo , Biodiversidade , Reatores Biológicos/microbiologia , Filtração/instrumentação , Gases/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação
14.
Sci Total Environ ; 760: 144046, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341629

RESUMO

Lentic ecosystems play a major role in the global carbon cycling but the understanding of the environmental determinants of lake metabolism is still limited, notably in small artificial lakes. Here the effects of environmental conditions on lake metabolism and CO2 and CH4 emissions were quantified in 11 small artificial gravel pit lakes covering a gradient of ecosystem maturity, ranging from young oligotrophic to older, hypereutrophic lakes. The diffusive fluxes of CO2 and CH4 ranged from -30.10 to 37.78 mmol m-2 d-1 and from 3.05 to 25.45 mmol m-2 d-1 across gravel pit lakes, respectively. Nutrients and chlorophyll a concentrations were negatively correlated with CO2 concentrations and emissions but positively correlated with CH4 concentrations and emissions from lakes. These findings indicate that, as they mature, gravel pit lakes switch from heterotrophic to autotrophic-based metabolism and hence turn into CO2-sinks. In contrast, the emission of CH4 increased along the maturity gradient. As a result, eutrophication occurring during ecosystem maturity increased net emissions in terms of climate impact (CO2 equivalent) due to the higher contribution of CH4 emissions. Overall, mean CO2equivalent emission was 7.9 g m-2 d-1, a value 3.7 and 4.7 times higher than values previously reported in temperate lakes and reservoirs, respectively. While previous studies reported that lakes represent emitters of C to the atmosphere, this study highlights that eutrophication may reverse lake contribution to global C budgets. However, this finding is to be balanced with the fact that eutrophication also increased CH4 emissions and hence, enhanced the potential impact of these ecosystems on climate. Implementing mitigation strategies for maintaining intermediate levels of maturity is therefore needed to limit the impacts of small artificial waterbodies on climate. This could be facilitated by their small size and should be planned at the earliest stages of artificial lake construction.

15.
Front Microbiol ; 12: 703792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335536

RESUMO

Most of the microbial biogeographic patterns in the oceans have been depicted at the whole community level, leaving out finer taxonomic resolution (i.e., microdiversity) that is crucial to conduct intra-population phylogeographic study, as commonly done for macroorganisms. Here, we present a new approach to unravel the bacterial phylogeographic patterns combining community-wide survey by 16S rRNA gene metabarcoding and intra-species resolution through the oligotyping method, allowing robust estimations of genetic and phylogeographic indices, and migration parameters. As a proof-of-concept, we focused on the bacterial genus Spirochaeta across three distant biogeographic provinces of the Southern Ocean; maritime Antarctica, sub-Antarctic Islands, and Patagonia. Each targeted Spirochaeta operational taxonomic units were characterized by a substantial intrapopulation microdiversity, and significant genetic differentiation and phylogeographic structure among the three provinces. Gene flow estimations among Spirochaeta populations support the role of the Antarctic Polar Front as a biogeographic barrier to bacterial dispersal between Antarctic and sub-Antarctic provinces. Conversely, the Antarctic Circumpolar Current appears as the main driver of gene flow, connecting sub-Antarctic Islands with Patagonia and maritime Antarctica. Additionally, historical processes (drift and dispersal limitation) govern up to 86% of the spatial turnover among Spirochaeta populations. Overall, our approach bridges the gap between microbial and macrobial ecology by revealing strong congruency with macroorganisms distribution patterns at the populational level, shaped by the same oceanographic structures and ecological processes.

16.
Microbiol Spectr ; 9(2): e0080521, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612672

RESUMO

During anaerobic digestion (AD) of protein-rich wastewater, ammonium (NH4+) is released by amino acid degradation. High NH4+ concentrations disturb the AD microbiome balance, leading to process impairments. The sensitivity of the AD microbiome to NH4+ and the inhibition threshold depend on multiple parameters, especially the previous microbial acclimation to ammonium stress. However, little is known about the effect of different NH4+ acclimation strategies on the differential expression of key active microbial taxa. Here, we applied NH4+ inputs of increasing intensity (from 1.7 to 15.2 g N-NH4+ liters-1) in batch assays fed with synthetic wastewater, according to two different strategies: (i) direct independent inputs at a unique target concentration and (ii) successive inputs in a stepwise manner. In both strategies, along the NH4+ gradient, the active methanogens shifted from acetoclastic Methanosaeta to Methanosarcina and eventually hydrogenotrophic Methanoculleus. Despite shorter latency times, the successive input modality led to lower methane production rate, lower soluble chemical oxygen demand (sCOD) removal efficiency, and lower half maximal inhibitory concentration, together with higher volatile fatty acid (VFA) accumulation, compared to the independent input modality. These differential performances were associated with a drastically distinct succession pattern of the active bacterial partners in both experiments. In particular, the direct exposure modality was characterized by a progressive enrichment of VFA producers (mainly Tepidimicrobium) and syntrophic VFA oxidizers (mainly Syntrophaceticus) with increasing NH4+ concentration, while the successive exposure modality was characterized by a more dynamic succession of VFA producers (mainly Clostridium, Sporanaerobacter, Terrisporobacter) and syntrophic VFA oxidizers (mainly Tepidanaerobacter, Syntrophomonas). These results bring relevant insights for improved process management through inoculum adaptation, bioaugmentation, or community-driven optimization. IMPORTANCE Anaerobic digestion (AD) is an attractive biotechnological process for wastewater bioremediation and bioenergy production in the form of methane-rich biogas. However, AD can be inhibited by ammonium generated by protein-rich effluent, commonly found in agro-industrial activities. Insights in the microbial community composition and identification of AD key players are crucial for anticipating process impairments in response to ammonium stress. They can also help in defining an optimal microbiome adapted to high ammonium levels. Here, we compared two strategies for acclimation of AD microbiome to increasing ammonium concentration to better understand the effect of this stress on the methanogens and their bacterial partners. Our results suggest that long-term cumulative exposure to ammonia disrupted the AD microbiome more strongly than direct (independent) ammonium additions. We identified bioindicators with different NH4+ tolerance capacity among VFA producers and syntrophic VFA oxidizers.


Assuntos
Aclimatação/fisiologia , Compostos de Amônio/metabolismo , Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Methanomicrobiaceae/metabolismo , Águas Residuárias/química , Aminoácidos/metabolismo , Amônia/toxicidade , Compostos de Amônio/análise , Reatores Biológicos/microbiologia , Microbiota/fisiologia , Águas Residuárias/microbiologia
17.
Environ Int ; 154: 106575, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33901975

RESUMO

Freshwater ecosystems are responsible for an important part of the methane (CH4) emissions which are likely to change with global warming. This study aims to evaluate temperature-induced (from 5 to 20 °C) changes on microbial community structure and methanogenic pathways in five sub-Antarctic lake sediments from Magallanes strait to Cape Horn, Chile. We combined in situ CH4 flux measurements, CH4 production rates (MPRs), gene abundance quantification and microbial community structure analysis (metabarcoding of the 16S rRNA gene). Under unamended conditions, a temperature increase of 5 °C doubled MPR while microbial community structure was not affected. Stimulation of methanogenesis by methanogenic precursors as acetate and H2/CO2, resulted in an increase of MPRs up to 127-fold and 19-fold, respectively, as well as an enrichment of mcrA-carriers strikingly stronger under acetate amendment. At low temperatures, H2/CO2-derived MPRs were considerably lower (down to 160-fold lower) than the acetate-derived MPRs, but the contribution of hydrogenotrophic methanogenesis increased with temperature. Temperature dependence of MPRs was significantly higher in incubations spiked with H2/CO2 (c. 1.9 eV) compared to incubations spiked with acetate or unamended (c. 0.8 eV). Temperature was not found to shape the total microbial community structure, that rather exhibited a site-specific variability among the studied lakes. However, the methanogenic archaeal community structure was driven by amended methanogenic precursors with a dominance of Methanobacterium in H2/CO2-based incubations and Methanosarcina in acetate-based incubations. We also suggested the importance of acetogenic H2-production outcompeting hydrogenotrohic methanogenesis especially at low temperatures, further supported by homoacetogen proportion in the microcosm communities. The combination of in situ-, and laboratory-based measurements and molecular approaches indicates that the hydrogenotrophic pathway may become more important with increasing temperatures than the acetoclastic pathway. In a continuously warming environment driven by climate change, such issues are crucial and may receive more attention.


Assuntos
Água Doce , Microbiota , Regiões Antárticas , Chile , RNA Ribossômico 16S/genética , Temperatura
18.
Appl Microbiol Biotechnol ; 85(3): 779-790, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19826809

RESUMO

In this study, we explored methodological aspects of nucleic acid recovery from microbial communities involved in a gas biofilter filled with pine bark woodchips. DNA was recovered indirectly in two steps, comparing different methods: cell dispersion (crushing, shaking, and sonication) and DNA extraction (three commercial kits and a laboratory protocol). The objectives were (a) to optimize cell desorption from the packing material and (b) to compare the 12 combinations of desorption and extraction methods, according to three relevant criteria: DNA yield, DNA purity, and community structure representation by denaturing gradient gel electrophoresis (DGGE). Cell dispersion was not influenced by the operational parameters tested for shaking and blending, while it increased with time for sonication. DNA extraction by the laboratory protocol provided the highest DNA yields, whereas the best DNA purity was obtained by a commercial kit designed for DNA extraction from soil. After successful PCR amplification, the 12 methods did not generate the same bias in microbial community representation. Eight combinations led to high diversity estimation, independently of the experimental procedure. Among them, six provided highly similar DGGE profiles. Two protocols generated a significantly dissimilar community profile, with less diversity. This study highlighted the crucial importance of DNA recovery bias evaluation.


Assuntos
Impressões Digitais de DNA/métodos , DNA/genética , DNA/isolamento & purificação , Metagenômica/métodos , Madeira/microbiologia , Biodiversidade , Análise por Conglomerados , Eletroforese em Gel de Poliacrilamida , Filtração/métodos , Desnaturação de Ácido Nucleico , Reação em Cadeia da Polimerase
19.
Front Microbiol ; 11: 308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184772

RESUMO

Abatus agassizii is an irregular sea urchin species that inhabits shallow waters of South Georgia and South Shetlands Islands. As a deposit-feeder, A. agassizii nutrition relies on the ingestion of the surrounding sediment in which it lives barely burrowed. Despite the low complexity of its feeding habit, it harbors a long and twice-looped digestive tract suggesting that it may host a complex bacterial community. Here, we characterized the gut microbiota of specimens from two A. agassizii populations at the south of the King George Island in the West Antarctic Peninsula. Using a metabarcoding approach targeting the 16S rRNA gene, we characterized the Abatus microbiota composition and putative functional capacity, evaluating its differentiation among the gut content and the gut tissue in comparison with the external sediment. Additionally, we aimed to define a core gut microbiota between A. agassizii populations to identify potential keystone bacterial taxa. Our results show that the diversity and the composition of the microbiota, at both genetic and predicted functional levels, were mostly driven by the sample type, and to a lesser extent by the population location. Specific bacterial taxa, belonging mostly to Planctomycetacia and Spirochaetia, were differently enriched in the gut content and the gut tissue, respectively. Predictive functional profiles revealed higher abundance of specific pathways, as the sulfur cycle in the gut content and the amino acid metabolism, in the gut tissue. Further, the definition of a core microbiota allowed to obtain evidence of specific localization of bacterial taxa and the identification of potential keystone taxa assigned to the Desulfobacula and Spirochaeta genera as potentially host selected. The ecological relevance of these keystone taxa in the host metabolism is discussed.

20.
Environ Microbiol Rep ; 12(3): 277-287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32090489

RESUMO

Methylmercury is a neurotoxin that bioaccumulates from seawater to high concentrations in marine fish, putting human and ecosystem health at risk. High methylmercury levels have been found in the oxic subsurface waters of all oceans, but only anaerobic microorganisms have been shown to efficiently produce methylmercury in anoxic environments. The microaerophilic nitrite-oxidizing bacteria Nitrospina have previously been suggested as possible mercury methylating bacteria in Antarctic sea ice. However, the microorganisms responsible for processing inorganic mercury into methylmercury in oxic seawater remain unknown. Here, we show metagenomic and metatranscriptomic evidence that the genetic potential for microbial methylmercury production is widespread in oxic seawater. We find high abundance and expression of the key mercury methylating genes hgcAB across all ocean basins, corresponding to the taxonomic relatives of known mercury methylating bacteria from Deltaproteobacteria, Firmicutes and Chloroflexi. Our results identify Nitrospina as the predominant and widespread microorganism carrying and actively expressing hgcAB. The highest hgcAB abundance and expression occurs in the oxic subsurface waters of the global ocean where the highest MeHg concentrations are typically observed.


Assuntos
Bactérias , Compostos de Metilmercúrio/metabolismo , Água do Mar , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Chloroflexi/metabolismo , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Deltaproteobacteria/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Genes Bacterianos , Mercúrio/metabolismo , Metagenômica , Metilação , Microbiota , Oceanos e Mares , Filogenia , Água do Mar/química , Água do Mar/microbiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA