Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 13(11): 2883-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25104842

RESUMO

Post-translational modifications of histones, such as acetylation and methylation, are differentially positioned in chromatin with respect to gene organization. For example, although histone H3 is often trimethylated on lysine 4 (H3K4me3) and acetylated on lysine 14 (H3K14ac) at active promoter regions, histone H3 lysine 36 trimethylation (H3K36me3) occurs throughout the open reading frames of transcriptionally active genes. The conserved yeast histone acetyltransferase complex, NuA3, specifically binds H3K4me3 through a plant homeodomain (PHD) finger in the Yng1 subunit, and subsequently catalyzes the acetylation of H3K14 through the histone acetyltransferase domain of Sas3, leading to transcription initiation at a subset of genes. We previously found that Ylr455w (Pdp3), an uncharacterized proline-tryptophan-tryptophan-proline (PWWP) domain-containing protein, copurifies with stable members of NuA3. Here, we employ mass-spectrometric analysis of affinity purified Pdp3, biophysical binding assays, and genetic analyses to classify NuA3 into two functionally distinct forms: NuA3a and NuA3b. Although NuA3a uses the PHD finger of Yng1 to interact with H3K4me3 at the 5'-end of open reading frames, NuA3b contains the unique member, Pdp3, which regulates an interaction between NuA3b and H3K36me3 at the transcribed regions of genes through its PWWP domain. We find that deletion of PDP3 decreases NuA3-directed transcription and results in growth defects when combined with transcription elongation mutants, suggesting NuA3b acts as a positive elongation factor. Finally, we determine that NuA3a, but not NuA3b, is synthetically lethal in combination with a deletion of the histone acetyltransferase GCN5, indicating NuA3b has a specialized role at coding regions that is independent of Gcn5 activity. Collectively, these studies define a new form of the NuA3 complex that associates with H3K36me3 to effect transcriptional elongation. MS data are available via ProteomeXchange with identifier PXD001156.


Assuntos
Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Sequência de Aminoácidos , Escherichia coli/genética , Histona Acetiltransferases/genética , Espectrometria de Massas , Metilação , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Elongação Traducional da Cadeia Peptídica/genética , Elongação Traducional da Cadeia Peptídica/fisiologia , Plasmídeos/genética , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Estrutura Terciária de Proteína , Alinhamento de Sequência
2.
Cancer Biol Ther ; 17(4): 457-66, 2016 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-26980196

RESUMO

Therapies for liver cancer particularly those including radiation are still inadequate. Inhibiting the stress response machinery is an appealing anti-cancer and radiosensitizing therapeutic strategy. Heat-shock-protein-90 (HSP90) is a molecular chaperone that is a prominent effector of the stress response machinery and is overexpressed in liver cancer cells. HSP90 client proteins include critical components of pathways implicated in liver cancer cell survival and radioresistance. The effects of a novel non-geldanamycin HSP90 inhibitor, ganetespib, combined with radiation were examined on 3 liver cancer cell lines, Hep3b, HepG2 and HUH7, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γH2AX foci kinetics and client protein expression in pathways important for liver cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined ganetespib-radiation treatment on tumor cell proliferation in a HepG2 hind-flank tumor graft model. Nanomolar levels of ganetespib alone exhibited liver cancer cell anti-cancer activity in vitro as shown by decreased clonogenic survival that was associated with increased apoptotic cell death, prominent G2-M arrest and marked changes in PI3K/AKT/mTOR and RAS/MAPK client protein activity. Ganetespib caused a supra-additive radiosensitization in all liver cancer cell lines at low nanomolar doses with enhancement ratios between 1.33-1.78. These results were confirmed in vivo, where the ganetespib-radiation combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in HepG2 tumor grafts. Our data suggest that combined ganetespib-radiation therapy exhibits promising activity against liver cancer cells, which should be investigated in clinical studies.


Assuntos
Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , Radiossensibilizantes/farmacologia , Triazóis/uso terapêutico , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia , Transdução de Sinais , Triazóis/administração & dosagem , Triazóis/farmacologia
3.
Cancer Biol Ther ; 14(4): 347-56, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358469

RESUMO

Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the "non-oncogene" addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded "client" proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4-1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G 2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Radiossensibilizantes/farmacologia , Resorcinóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos da radiação , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Regulação para Baixo , Fase G2/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
4.
PLoS One ; 8(6): e65726, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762417

RESUMO

Sorafenib (SOR) is the only systemic agent known to improve survival for hepatocellular carcinoma (HCC). However, SOR prolongs survival by less than 3 months and does not alter symptomatic progression. To improve outcomes, several phase I-II trials are currently examining SOR with radiation (RT) for HCC utilizing heterogeneous concurrent and sequential treatment regimens. Our study provides preclinical data characterizing the effects of concurrent versus sequential RT-SOR on HCC cells both in vitro and in vivo. Concurrent and sequential RT-SOR regimens were tested for efficacy among 4 HCC cell lines in vitro by assessment of clonogenic survival, apoptosis, cell cycle distribution, and γ-H2AX foci formation. Results were confirmed in vivo by evaluating tumor growth delay and performing immunofluorescence staining in a hind-flank xenograft model. In vitro, concurrent RT-SOR produced radioprotection in 3 of 4 cell lines, whereas sequential RT-SOR produced decreased colony formation among all 4. Sequential RT-SOR increased apoptosis compared to RT alone, while concurrent RT-SOR did not. Sorafenib induced reassortment into less radiosensitive phases of the cell cycle through G1-S delay and cell cycle slowing. More double-strand breaks (DSBs) persisted 24 h post-irradiation for RT alone versus concurrent RT-SOR. In vivo, sequential RT-SOR produced the greatest tumor growth delay, while concurrent RT-SOR was similar to RT alone. More persistent DSBs were observed in xenografts treated with sequential RT-SOR or RT alone versus concurrent RT-SOR. Sequential RT-SOR additionally produced a greater reduction in xenograft tumor vascularity and mitotic index than either concurrent RT-SOR or RT alone. In conclusion, sequential RT-SOR demonstrates greater efficacy against HCC than concurrent RT-SOR both in vitro and in vivo. These results may have implications for clinical decision-making and prospective trial design.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/terapia , Terapia Combinada/métodos , Raios gama/uso terapêutico , Histonas/genética , Neoplasias Hepáticas/terapia , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Membro Posterior/patologia , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Neovascularização Patológica/prevenção & controle , Niacinamida/uso terapêutico , Tolerância a Radiação , Sorafenibe , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA