Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(34): 12226-12234, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581528

RESUMO

Due to the fracturing fluid imbibition and primary water, oil-water two-phase fluids generally exist in shale nanoporous media. The effects of water phase on shale oil recovery and geological carbon sequestration via CO2 huff-n-puff is non-negligible. Meanwhile, oil-CO2 miscibility after CO2 huff-n-puff also has an important effect on oil-water two-phase flow behaviors. In this work, by considering the oil-CO2 competitive adsorption behaviors and the effects of oil-CO2 miscibility on water wettability, an improved multicomponent and multiphase lattice Boltzmann method is proposed to study the effects of water phase on CO2 huff-n-puff. Additionally, the effects of oil-CO2 miscibility on oil-water flow behaviors and relative permeability are also discussed. The results show that due to Jamin's effect of water droplets in oil-wetting pores and the capillary resistance of bridge-like water phase in water-wetting pores, CO2 can hardly diffuse into the oil phase, causing a large amount of remaining oil. As water saturation increases, Jamin's effect and the capillary resistance become more pronounced, and the CO2 storage mass gradually decreases. Then, based on the results from molecular dynamics simulations, the influences of oil-CO2 miscibility on oil-water relative permeability in calcite nanoporous media are studied, and as the oil mass percentage in the oil-CO2 miscible system decreases, the oil/water relative permeability decreases/increases. The improved lattice Boltzmann model can be readily extended to quantitatively calculate geological CO2 storage mass considering water saturation and calculate the accurate oil-water relative permeability based on the real 3D digital core.

2.
Langmuir ; 37(5): 1623-1636, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33512167

RESUMO

Fluid flow in porous systems driven by capillary pressure is one of the most ubiquitous phenomena in nature and industry, including petroleum and hydraulic engineering as well as material and life sciences. The classical Lucas-Washburn (LW) equation and its modified forms were developed and have been applied extensively to elucidate the fundamental mechanisms underlying the basic statics and dynamics of the capillary-driven flow in porous systems. The LW equation assumes that fluids are incompressible Newton ones and that capillary channels all have the same radii. This kind of hypothesis is not true for many natural situations, however, where porous systems comprise complicated pore and capillary channel structures at microscales. The LW equation therefore often leads to inaccurate capillary imbibition predictions in such situations. Numerous studies have been conducted in recent years to develop and assess the modifications and extensions of the LW equation in various porous systems. Significant progresses in computational techniques have also been attained to further improve our understanding of imbibition dynamics. A state-of-the-art review is therefore needed to summarize the recent significant models and numerical simulation techniques as well as to discuss key ongoing research topics arising from various new engineering practices. The theoretical basis of the LW equation is first introduced in this review and recent progress in mathematical models is then summarized to demonstrate the modifications and extensions of this equation to various microchannels and porous media. These include capillary tubes with nonuniform and noncircular cross sections, discrete fractures, and capillary tubes that are not straight as well as heterogeneous porous media. Numerical studies on the LW equation are also reviewed, and comments on future works and research directions for LW-based capillary-driven flows in porous systems are listed.

3.
Langmuir ; 30(18): 5142-51, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24785579

RESUMO

Spontaneous imbibition of wetting liquids in porous media is a ubiquitous natural phenomenon which has received much attention in a wide variety of fields over several decades. Many traditional and recently presented capillary-driven flow models are derived based on Hagen-Poiseuille (H-P) flow in cylindrical capillaries. However, some limitations of these models have motivated modifications by taking into account different geometrical factors. In this work, a more generalized spontaneous imbibition model is developed by considering the different sizes and shapes of pores, the tortuosity of imbibition streamlines in random porous media, and the initial wetting-phase saturation. The interrelationships of accumulated imbibition weight, imbibition rate and gas recovery and the properties of the porous media, wetting liquids, and their interactions are derived analytically. A theoretical analysis and comparison denote that the presented equations can generalize several traditional and newly developed models from the literature. The proposed model was evaluated using previously published data for spontaneous imbibition measured in various natural and engineered materials including different rock types, fibrous materials, and silica glass. The test results show that the generalized model can be used to characterize the spontaneous imbibition behavior of many different porous media and that pore shape cannot always be assumed to be cylindrical.

4.
Heliyon ; 9(7): e17756, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449188

RESUMO

Vortices capture the attention of every scientist (as soon as they come into existence) while studying any flow problem because of their significance in comprehending fluid mixing and mass transport processes. A vortex is indeed a physical phenomenon that happens when a liquid or a gas flow in a circular motion. They are generated due to the velocity difference and may be seen in hurricanes, air moving across the plane wing, tornadoes, etc. The study of vortices is important for understanding various natural phenomena in different settings. This work explores the complex dynamics of the Lorentz force that drives the rotation of nanostructures and the emergence of intricate vortex patterns in a hybrid fluid with Fe3O4-Cu nanoparticles. The hybrid nanofluid is modeled as a single-phase fluid, and the partial differential equations (PDEs) that govern its behavior are solved numerically. This work also introduces a novel analysis that enables us to visualize the flow lines and isotherms around the magnetic strips in the flow domain. The Lorentz force confined to the strips causes the spinning of hybrid nanoparticles, resulting in complex vortex structures in the flow domain. The results indicate that the magnetic field lowers the Nusselt number by 34% while raising the skin friction by 9%. The Reynolds number amplifies the influence of the localized magnetic field on the flow dynamics. Lastly, the nano-scaled structures in the flow enhance the Nusselt number significantly while having a minor effect on the skin friction factor.

5.
Adv Colloid Interface Sci ; 304: 102654, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35468356

RESUMO

Capillary imbibition, such as plant roots taking up water, reservoir rocks absorbing brine and a tissue paper wiping stains, is pervasive occurred in nature, engineering and industrial fields, as well as in our daily life. This phenomenon is earliest modeled through the process that wetting liquid is spontaneously propelled by capillary pressure into regular geometry models. Recent studies have attracted more attention on capillary-driven flow models within more complex geometries of the channel, since a detailed understanding of capillary imbibition dynamics within irregular geometry models necessitates the fundamentals to fluid transport mechanisms in porous media with complex pore topologies. Herein, the fundamentals and concepts of different capillary imbibition models in terms of geometries over the past 100 years are reviewed critically, such as circular and non-circular capillaries, open and closed capillaries with triangular/rectangular cross-sections, and heterogeneous geometries with axial variations. The applications of these models with appropriate conditions are discussed in depth accordingly, with a particular emphasize on the capillary flow pattern as a consequence of capillary geometry. In addition, a universal model is proposed based on the dynamic wetting condition and equivalent cylindrical geometry to describe the capillary imbibition process in terms of various solid topologies. Finally, future research is suggested to focus on analyzing the dynamics during corner flow, the snap-off of wetting fluid, the capillary rise of non-Newtonian fluids and applying accurate physical simulation methods on capillary-driven flow processes. Generally, this review provides a comprehensive understanding of the capillary-driven flow models inside various capillary geometries and affords an overview of potential advanced developments to enhance the current understanding of fluid transport mechanisms in porous media.


Assuntos
Capilares , Porosidade , Molhabilidade
6.
Materials (Basel) ; 15(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295211

RESUMO

Shale is a special kind of rock mass and it is particularly important to evaluate its brittleness for the extraction of gas and oil from nanoporous shale. The current brittleness studies are mostly macro-evaluation methods, and there is a lack of a micro-brittleness index that is based on nanoindentation tests. In this paper, nanoindentation tests are carried out on the surface of shale to obtain mechanical property, and then a novel micro-brittleness index is proposed. Drawing a heat map by meshing indentation, the distribution characteristics of the brittleness index for the surface of shale and the variation laws between the mineral and brittleness index are explored. The results showed that the dimensionless brittleness index involved parameters including indentation irreversible deformation, elastic modulus, hardness and fracture toughness. The micro-brittleness index of the shale ranged from 7.46 to 65.69, and the average brittleness index was 25.837. The brittleness index exhibited an obvious bimodal distribution and there was great heterogeneity on the surface of shale. The crack propagation channels were formed by connecting many indentation points on the shale surface with high brittleness. The total brittleness index of quartz minerals was high, but the cementation effect with different minerals was various. Although the general brittleness of clay was low, the high brittleness index phenomenon was also exhibited. Studying the micro-brittleness of shale provides a more detailed evaluation for the shale friability, which is used to determine the optimal shale oil and gas recovery regime.

7.
J Nanosci Nanotechnol ; 21(1): 234-245, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213626

RESUMO

The complex pore system in tight sandstone reservoirs controls the storage and transport of natural gas. Thus, quantitatively characterizing the micro-nanopore structure of tight sandstone reservoirs is of great significance to determining the accumulation and distribution of tight gas. The pore structure of reservoirs was determined through polarizing microscopy, scanning electron microscopy (SEM), and the combination of mercury injection capillary pressure (MICP) and nuclear magnetic resonance (NMR) experiments on Late Paleozoic conventional and tight sandstone samples from the Linxing Block, Ordos Basin. The results show that in contrast to conventional sandstone, dissolution pores, with diameters less than 8 µm, are the main contributors to the gas storage space of tight sandstone reservoirs. The pore size distribution derived from the MICP experiment demonstrates that the main peak of tight sandstones corresponds to a pore radius in the range of 247 nm to 371 nm, while the secondary peak usually corresponds to 18 nm. The results of the NMR test illustrate that the T2 spectra of tight sandstones are unimodal, bimodal and multimodal, and the main NMR peak is highly related to the MICP peak. Fractal theory was proposed to quantitatively characterize the complex pore structure and rough porous surface. The sandstones show fractal characteristics including nanopore fractal dimension DN obtained from the MICP and large pore fractal dimension DL obtained from the NMR experiment. Both DN and DL are positively correlated with porosity and negatively correlated with permeability, demonstrating that complex and heterogeneous pore structure could increase the gas storage space and reduce the connectivity.

8.
J Colloid Interface Sci ; 521: 226-231, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29571104

RESUMO

HYPOTHESIS: The effect of gravity was generally neglected in the classical imbibition law for one dimensional geometries. Following researches complemented the classical "Lucas-Washburn law" with consideration of gravity, but no examination of geometries under influence of gravity has been done, while geometry was shown to yield different scaling law for the imbibition process. Hence, it is possible to discover new time exponents for imbibition length in two dimensional and three dimensional imbibition process under gravity. METHODS: Through theoretical analysis and numerical simulations, the size of wetted region under three gravitational scenarios (zero gravity, acceleration and deceleration) in three geometries (one dimensional, two dimensional radial and three dimensional radial) are determined quantitatively. FINDINGS: New time exponents other than classic 1/2 are identified under different directions of gravity in two dimensional radial and three dimensional radial imbibition, and symmetry of time exponents due to different directions of gravity is discovered. A new time exponent of 1 for the acceleration case in one dimensional imbibition is found. The flow field in the wetted region is also determined from simulations. Discoveries in this paper show that new physical laws for imbibition length exist at the intersection of gravity and geometry.

9.
J Hazard Mater ; 288: 51-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25682517

RESUMO

Bioleaching by Aspergillus niger strain SY1 combined with Fenton-like reaction was optimized to improve trace metal removal and dewaterability of dredged sediments. The major optimized parameters were the duration of bioleaching and H2O2 dose in Fenton-like process (5 days and 2g H2O2/L, respectively). Bioleaching resulted in the removal of ≈90% of Cd, ≈60% of Zn and Cu, ≈20% of Pb, and in decrease of sediment pH from 6.6 to 2.5 due to organic acids produced by A. niger. After addition of H2O2, Fenton-like reaction was initiated and further metal removal occurred. Overall efficiency of the combined process comprised: (i) reduction of Cd content in sediment by 99.5%, Cu and Zn by >70% and Pb by 39% as a result of metal release bound in all mobilizable fractions; (ii) decrease of sediment capillary suction time (CST) from 98.2s to 10.1s (by 89.8%) and specific resistance to filtration (SRF) from 37.4×10(12)m/kg to 6.2×10(12)m/kg (by 83.8%), due to reducing amount of extracellular polymeric substances (EPS) by 68.7% and bound water content by 79.1%. The combined process was found to be an efficient method to remove trace metals and improve dewaterability of contaminated dredged sediments.


Assuntos
Sedimentos Geológicos/análise , Metais/análise , Aspergillus niger/metabolismo , Biodegradação Ambiental , Cádmio/química , Cobre/química , Filtração , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro , Esgotos , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA