Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(30)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33827051

RESUMO

Schiff base formation reaction is highly dynamic, and the microstructure of Schiff base polymers is greatly affected by reaction kinetics. Herein, a series of Schiff base cross-linked polymers (SPs) with different morphologies are synthesized through adjusting the species and amount of catalysts. Nitrogen/oxygen co-doped hierarchical porous carbon nanoparticles (HPCNs), with tunable morphology, specific surface area (SSA) and porosity, are obtained after one-step carbonization. The optimal sample (HPCN-3) possesses a coral reef-like microstructure, high SSA up to 1003 m2g-1, and a hierarchical porous structure, exhibiting a remarkable specific capacitance of 359.5 F g-1(at 0.5 A g-1), outstanding rate capability and cycle stability in a 1 M H2SO4electrolyte. Additionally, the normalized electric double layer capacitance (EDLC) and faradaic capacitance of HPCN-3 are 0.239 F m-2and 10.24 F g-1respectively, certifying its superior electrochemical performance deriving from coral reef-like structure, high external surface area and efficient utilization of heteroatoms. The semi-solid-state symmetrical supercapacitor based on HPCN-3 delivers a capacitance of 55 F g-1at 0.5 A g-1, good cycle stability of 86.7% after 5000 GCD cycles at 10 A g-1, and the energy density ranges from 7.64 to 4.86 Wh kg-1.

2.
Nanotechnology ; 30(30): 305402, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30865933

RESUMO

Simultaneous introduction of both transition metal and other inorganic elements into the carbon matrix has attracted great attention in the fabrication of carbon materials with high electrochemical properties. Herein, rational design of ligand-iron coordinative supramolecular precursors is achieved for the fabrication of Fe-N/C catalysts, which possess high oxygen reduction reaction (ORR) performance. A series of precursors are prepared by a simple coordination reaction between a three armed catechol monomer and iron ions. Particular interest is focused on tuning the doping species, surface area and morphology of the Fe-N/C catalysts through a simple selection of iron resources. We show that an Fe-N/C catalyst derived from Fe2(SO4)3 at a carbonization temperature of 800 °C, has the optimized ORR performance with an onset potential of 0.930 V and half-wave potential of 0.801 V. Detailed investigation indicates that the synergistic effect among doping elements of nitrogen and sulfur and the unique carbon structure determines the performance of the Fe-N/C catalysts. Our findings may be of significance for the fabrication of doped carbon materials using coordinative supramolecular polymers as precursors.

3.
Sci Robot ; 6(53)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-34043565

RESUMO

Although there have been notable advances in adhesive materials, the ability to program attaching and detaching behavior in these materials remains a challenge. Here, we report a borate ester polymer hydrogel that can rapidly switch between adhesive and nonadhesive states in response to a mild electrical stimulus (voltages between 3.0 and 4.5 V). This behavior is achieved by controlling the exposure and shielding of the catechol group through water electrolysis-induced reversible cleavage and reformation of the borate ester moiety. By switching the electric field direction, the hydrogel can repeatedly attach to and detach from various surfaces with a response time as low as 1 s. This programmable attaching/detaching strategy provides an alternative approach for robot climbing. The hydrogel is simply pasted onto the moving parts of climbing robots without complicated engineering and morphological designs. Using our hydrogel as feet and wheels, the tethered walking robots and wheeled robots can climb on both vertical and inverted conductive substrates (i.e., moving upside down) such as stainless steel and copper. Our study establishes an effective route for the design of smart polymer adhesives that are applicable in intelligent devices and an electrochemical strategy to regulate the adhesion.

4.
ACS Appl Mater Interfaces ; 12(18): 20479-20489, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32283918

RESUMO

Hydrogel electrolytes are of particular interest in the fabrication of flexible supercapacitors that are able to withstand deformation and physical damage. Nevertheless, there still exists a huge space in the design of hydrogel electrolytes with comprehensive performances including high processability, conductivity, mechanical strength, and self-healability. Herein, a slidable polymer network is constructed through the cross-linking reaction among commercially available polyethyleneimine (PEI), polyvinyl alcohol (PVA), and 4-formylphenylboronic acid (Bn) to generate PEI-PVA-Bn hydrogels, which have high adaptability to various electrolytes such as LiCl, NaCl, KCl, and ionic liquids. The as formed hydrogel electrolytes not only show excellent mechanical property (elongation at break up to 1223%, strength of 34.6 kPa) and self-healability (highest strain self-healing efficiency reaches 94.3% within 2 min) but also exhibit high conductivity (up to 21.49 mS cm-1). Flexible supercapacitors constructed by sandwiching the PEI-PVA-Bn-LiCl hydrogel electrolyte between two multiwalled carbon nanotube electrodes demonstrate a broadened operating potential window of 1.4 V, specific capacitance of 16.7 mF cm-2, high cycling stability up to 10 000 charge/discharge cycles, and excellent mechanical stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA