Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 184: 106336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683832

RESUMO

Pasteurella multocida.(PM) infection is a major cause of avian cholera, but the pathogenesis of the disease is unknown. The purpose of this study was to further understand the host response to infection by using a duck model of PM, 20 female ducks were divided into two groups (n = 10). One group was infected with PM, while the other served as an uninfected control group. The ducks were observed after infection and samples were collected for testing. In this study, we report the mechanism of PM-induced inflammation to further mediate apoptosis and autophagic signaling pathways in liver cells. Our results demonstrated that PM infection initially induces hemorrhagic and necrotic lesions in the liver tissue of duck, promoting inflammasome assembly and release, triggering inflammation. The TLR4/NF-κB axis activated and interacted with multiple inflammation-related proteins, including TNF-α and IL-1ß, which affected apoptosis and autophagy. Tumor necrosis factor induced hepatocyte apoptosis was implicated in a wide range of liver diseases; the release of TNF-α and activation with NF-κB further incite apoptotic pathways,such as Bax/BCL2/caspase to promote apoptotic genes APAF1, Bax, Caspase3, BCL-2, p53, and Cytc expression. Finally, PM-induced autophagy suppressed liver injury by promoting the Beclin-1, LC3B, p62, and mTOR. Thus, liver injury caused by PM via promoting autophagy was induced. In conclusion, we analyzed the liver injury of ducks infected with PM, and confirmed that inflammation appeared in the liver; this was followed by the intricate interplay between inflammation, apoptosis, and autophagy signaling pathways. The observed results provided a reference basis for studying pathogenic mechanisms of PM-host interactions.


Assuntos
Pasteurella multocida , Animais , Feminino , Pasteurella multocida/metabolismo , Patos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Proteína X Associada a bcl-2 , Fígado/patologia , Inflamação/patologia , Autofagia , Apoptose
2.
Poult Sci ; 102(5): 102583, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004250

RESUMO

Pasteurella multocida (P. multocida) is a zoonotic bacterium that can cause diseases in a variety of animals. It was divided into 5 serogroups, and serogroup A is mainly prevalent in avian hosts. We isolated a virulent and multidrug-resistant P. multocida strain from Guangdong duck liver and named it PMWSG-4 (GenBank accession no. CP077723.1). To understand the pathogenicity of this strain, the pathogenicity test was carried out with mice and ducks. The results showed that PMSWG-4 was highly pathogenic to ducks and mice, and the LD50 is 4.5 and 73 CFU, respectively. In order to study its genetic characteristics, pathogenicity, and relationship with the host, we performed a whole genome sequencing. The genome size of the isolated PMWSG-4 was 2.38 Mbp, with a G+C content of 40.3%, and coding 2,313 Coding DNA Sequence (CDS). The genome carries 162 potential virulence-associated genes, 32 different drug resistance phenotypes, 102 genes possibly involved in pathogen-host interaction, 2 gene island groups, and 4 prophages. In addition, we also found a new drug-resistant plasmid from strain PMWSG-4, named pXL001 (GenBank accession no. CP077724.1). After verified, the plasmid is a new plasmid carrying the floR florfenicol resistance gene. The whole genome is of great significance for further studying the pathogenesis and genetic characteristics of duck-derived P. multocida.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Camundongos , Pasteurella multocida/genética , Infecções por Pasteurella/veterinária , Galinhas/genética , Plasmídeos/genética , Genoma Bacteriano , Patos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA