Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401727, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979891

RESUMO

The development of innovative synthetic strategies to create functional polycaprolactones is highly demanded for advanced material applications. In this contribution, we reported a facile synthetic strategy to prepare a class of CL-based monomers (R-TO) derived from epoxides. They readily polymerize via well-controlled ring-opening polymerization (ROP) to afford a series of polyesters P(R-TO) with high molecular weight (Mn up to 350 kDa). Sequential addition copolymerization of MTO and L-lactide (L-LA) allowed to access of a series of ABA triblock copolymers with composition-dependent mechanical properties. Notably, P(L-LA)100-b-P(MTO)500-b-P(L-LA)100 containing the amorphous P(MTO) segment as a soft midblock and crystalline P(L-LA) domain as hard end block behaved as an excellent thermoplastic elastomer (TPE) with high elongation at break (1438 ± 204%), tensile strength (23.5 ± 1.7 MPa), and outstanding elastic recovery (>88%).

2.
Angew Chem Int Ed Engl ; 63(13): e202400196, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38356038

RESUMO

The development of new chemically recyclable polymers via monomer design would provide a transformative strategy to address the energy crisis and plastic pollution problem. Biaryl-fused cyclic esters were targeted to generate axially chiral polymers, which would impart new material performance. To overcome the non-polymerizability of the biaryl-fused monomer DBO, a cyclic ester Me-DBO installed with dimethyl substitution was prepared to enable its polymerizability via enhancing torsional strain. Impressively, Me-DBO readily went through well-controlled ring-opening polymerization, producing polymer P(Me-DBO) with high glass transition temperature (Tg >100 °C). Intriguingly, mixing these complementary enantiopure polymers containing axial chirality promoted a transformation from amorphous to crystalline material, affording a semicrystalline stereocomplex with a melting transition temperature more than 300 °C. P(Me-DBO) were capable of depolymerizing back to Me-DBO in high efficiency, highlighting an excellent recyclability.

3.
Angew Chem Int Ed Engl ; 63(29): e202405382, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682252

RESUMO

Isotactic polythioesters (PTEs) that are thioester analogs to natural polyhydroxyalkanoates (PHAs) have attracted growing attention due to their distinct properties. However, the development of chemically synthetic methods for preparing isotactic PTEs has long been an intricate endeavour. Herein, we report the successful synthesis of perfectly isotactic PTEs via stereocontrolled ring-opening polymerization. This binaphthalene-salen aluminium (SalBinam-Al) catalyst promoted a robust polymerization of rac-α-substituted-ß-propiothiolactones (rac-BTL and rac-PTL) with highly kinetic resolution, affording perfectly isotactic P(BTL) and P(PTL) with Mn up to 276 kDa. Impressively, the isotactic P(BTL) formed a supramolecular stereocomplex with improved thermal property (Tm=204 °C). Ultimately, this kinetic resolution polymerization enabled the facile isolation of enantiopure (S)-BTL, which could efficiently convert to an important pharmaceutical building block (S)-2-benzyl-3-mercapto-propanoic acid. Isotactic P(PTL) served as a tough and ductile material comparable to the commercialized polyolefins. This synthetic system allowed to access of isotactic PTEs, establishing a powerful platform for the discovery of sustainable plastics.

4.
Angew Chem Int Ed Engl ; 61(15): e202117639, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104021

RESUMO

The development of innovative synthetic polymer systems to overcome the trade-offs between the polymer's depolymerizability and performance properties is in high demand for advanced material applications and sustainable development. In this contribution, we prepared a class of aromatic cyclic esters (M1-M5) from thiosalicylic acid and epoxides by facile one-pot synthesis. Ring-opening polymerization of Ms afforded aromatic polyesters P(M)s with high molecular weights and narrow dispersities. The physical and mechanical properties of P(M)s can be modulated by stereocomplexation and regulation of the side-chain flexibility of the polymers, ultimately achieving high-performance properties such as high thermal stability and crystallinity (Tm up to 209 °C), as well as polyolefin-like high mechanical strength, ductility, and toughness. Furthermore, the functionalizable moieties of P(M)s have driven a wide array of post-polymerization modifications toward access to value-added materials. More importantly, the P(M)s were able to selectively depolymerize into monomers in excellent yields, thus establishing its circular life cycle.

5.
J Am Chem Soc ; 143(49): 20591-20597, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34842423

RESUMO

The development of high-performance recyclable polymers represents a circular plastics economy to address the urgent issues of plastic sustainability. Herein, we design a series of biobased seven-membered-ring esters containing aromatic and aliphatic moieties. Ring-opening polymerization studies showed that they readily polymerize with excellent activity (TOF up to 2.1 × 105 h-1) at room temperature and produce polymers with high molecular weight (Mn up to 438 kg/mol). The variety of functionalities allows us to investigate the substitution effect on polymerizability/recyclability of monomers and properties of polymers (such as Tgs from -1 to 79 °C). Remarkably, a stereocomplexed P(M2) exhibited significantly increased Tm and crystallization rate. More importantly, product P(M)s were capable of depolymerizing into their monomers in solution or bulk with high efficiency, thus establishing their circular life cycle.

6.
Inorg Chem ; 60(16): 11784-11794, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34185507

RESUMO

Postsynthetic modification methods have emerged as indispensable tools for tuning the properties and reactivity of metal-organic frameworks (MOFs). In particular, postsynthetic X-type ligand exchange (PXLE) at metal building units has gained increasing attention as a means of immobilizing guest species, modulating the reactivity of framework metal ions, and introducing new functional groups. The reaction of a Zn-OH functionalized analogue of CFA-1 (1-OH, Zn(ZnOH)4(bibta)3, where bibta2- = 5,5'-bibenzotriazolate) with organic substrates containing mildly acidic E-H groups (E = C, O, N) results in the formation of Zn-E species and water as a byproduct. This Brønsted acid-base PXLE reaction is compatible with substrates with pKa(DMSO) values as high as 30 and offers a rapid and convenient means of introducing new functional groups at Kuratwoski-type metal nodes. Gas adsorption and diffuse reflectance infrared Fourier transform spectroscopy experiments reveal that the anilide-exchanged MOFs 1-NHPh0.9 and 1-NHPh2.5 exhibit enhanced low-pressure CO2 adsorption compared to 1-OH as a result of a Zn-NHPh + CO2 ⇌ Zn-O2CNHPh chemisorption mechanism. The MFU-4l analogue 2-NHPh ([Zn5(OH)2.1(NHPh)1.9(btdd)3], where btdd2- = bis(1,2,3-triazolo)dibenzodioxin), shows a similar improvement in CO2 adsorption in comparison to the parent MOF containing only Zn-OH groups.

7.
Angew Chem Int Ed Engl ; 60(39): 21221-21225, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34342117

RESUMO

A novel metal-organic framework (MOF) containing one-dimensional, Fe2+ chains bridged by dipyrazolate linkers and N,N-dimethylformamide (DMF) ligands has been synthesized. The unusual chain-type metal nodes feature accessible coordination sites on adjacent metal centers, resulting in motifs that are reminiscent of the active sites in non-heme diiron enzymes. The MOF facilitates direct reduction of nitric oxide (NO), producing nearly quantitative yields of nitrous oxide (N2 O) and emulating the reactivity of flavodiiron nitric oxide reductases (FNORs). The ferrous form of the MOF can be regenerated via a synthetic cycle involving reduction with cobaltocene (CoCp2 ) followed by reaction with trimethylsilyl triflate (TMSOTf).


Assuntos
Materiais Biomiméticos/química , Compostos Ferrosos/química , Estruturas Metalorgânicas/química , Óxido Nítrico/química , Pirazóis/química , Estrutura Molecular , Oxirredução
8.
J Am Chem Soc ; 137(49): 15501-10, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26562609

RESUMO

To gain a better understanding of the influence of cationic additives on coordination-insertion polymerization and to leverage this knowledge in the construction of enhanced olefin polymerization catalysts, we have synthesized a new family of nickel phenoxyimine-polyethylene glycol complexes (NiL0, NiL2-NiL4) that form discrete molecular species with alkali metal ions (M(+) = Li(+), Na(+), K(+)). Metal binding titration studies and structural characterization by X-ray crystallography provide evidence for the self-assembly of both 1:1 and 2:1 NiL:M(+) species in solution, except for NiL4/Na(+) which form only the 1:1 complex. It was found that upon treatment with a phosphine scavenger, these NiL complexes are active catalysts for ethylene polymerization. We demonstrate that the addition of M(+) to NiL can result in up to a 20-fold increase in catalytic efficiency as well as enhancement in polymer molecular weight and branching frequency compared to the use of NiL without coadditives. To the best of our knowledge, this work provides the first systematic study of the effect of secondary metal ions on metal-catalyzed polymerization processes and offers a new general design strategy for developing the next generation of high performance olefin polymerization catalysts.

9.
Chem Commun (Camb) ; 59(85): 12731-12734, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37800444

RESUMO

Here, we prepared a series of thiourea-based organocatalysts 1-7 by combining two stereogenic elements: binaphthyl-amine and cyclohexyl diamine moieties. Catalyst (R,S)-1 facilitated a stereoselective polymerization of rac-LA to afford iso-enriched PDLA with Pm of 0.96 while its enantiomer (S,R)-1 produced PLLA with Pm of 0.96. These iso-enriched PLA contributed to forming a stereocomplexed PLA with a significantly increased Tm of 196 °C.

10.
Nat Commun ; 14(1): 3198, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268636

RESUMO

The development of chemically recyclable polymers serves as an attractive approach to address the global plastic pollution crisis. Monomer design principle is the key to achieving chemical recycling to monomer. Herein, we provide a systematic investigation to evaluate a range of substitution effects and structure-property relationships in the ɛ-caprolactone (CL) system. Thermodynamic and recyclability studies reveal that the substituent size and position could regulate their ceiling temperatures (Tc). Impressively, M4 equipped with a tert-butyl group displays a Tc of 241 °C. A series of spirocyclic acetal-functionalized CLs prepared by a facile two-step reaction undergo efficient ring-opening polymerization and subsequent depolymerization. The resulting polymers demonstrate various thermal properties and a transformation of the mechanical performance from brittleness to ductility. Notably, the toughness and ductility of P(M13) is comparable to the commodity plastic isotactic polypropylene. This comprehensive study is aimed to provide a guideline to the future monomer design towards chemically recyclable polymers.

11.
ACS Macro Lett ; 11(2): 173-178, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35574765

RESUMO

Monomer design plays an important role in the development of polymers with desired thermal properties and chemical recyclability. Here we prepared a class of seven-membered ring carbonates containing trans-cyclohexyl fused rings. These monomers showed excellent activity for ring-opening polymerization (ROP) with turnover frequency (TOF) up to 6 × 105 h-1 and catalyst loading down to 50 ppm, which yielded high-molecular-weight polycarbonates (Mn up to 673 kg/mol) with great thermostability (Td > 300 °C). Ultimately, the resulting polycarbonates can completely depolymerize into their corresponding cyclic dimers that can repolymerize to synthesize the starting polymers in moderate yields, demonstrating a potential route to achieve chemical recycling. Postfunctionalization of the unsaturated polycarbonate was conducted through cross-linking reaction and "click" reaction under UV irradiation.

12.
Dalton Trans ; 48(48): 17887-17897, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31782456

RESUMO

We have prepared a new series of nickel phosphine phosphonate ester complexes that feature two metal-chelating polyethylene glycol (PEG) side arms. Metal binding and reactivity studies in polar solvents showed that they readily coordinate external cations, including alkali (Li+, Na+, K+), alkaline (Mg2+, Ca2+), transition (Sc3+, Co2+, Zn2+), post-transition (Ga3+), and lanthanide (La3+) metals. Although olefin polymerization reactions are typically performed in non-polar solvents, which cannot solubilize +2 and +3 metal cations, we discovered that our nickel catalysts could promote ethylene polymerization in neat tetrahydrofuran. This advance allowed us, for the first time, to systematically investigate the effects of a wide range of M+, M2+, and M3+ ions on the reactivity of nickel olefin polymerization catalysts. In ethylene homopolymerization, the addition of Co(OTf)2 to our nickel-PEG complexes provided the largest boost in activity (up to 11-fold, 2.7 × 106 g mol-1 h-1) compared to that in the absence of external salts. The catalyst enhancing effects of secondary metals were also observed in studies of ethylene and polar olefin (e.g., propyl vinyl ether, allyl butyl ether, methyl-10-undecenoate, and 5-acetoxy-1-pentene) copolymerization. Notably, combining either Co2+ or Zn2+ with our nickel complexes increased the rates of polymerization in the presence of propyl vinyl ether by about 5.0- and 2.4-fold, respectively. Although further studies are needed to elucidate the structural and mechanistic roles of the secondary metals, this work is an important advance toward the development of cation-switchable polymerization catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA