Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Opt Lett ; 49(9): 2453-2456, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691742

RESUMO

Coupled atmosphere and ocean remote sensing retrievals of aerosol, cloud, and oceanic phytoplankton microphysical properties, such as those carried out by the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, involve single-scattering calculations that are time consuming. Lookup tables (LUTs) exist to speed up these calculations for aerosol and water droplets in the atmosphere. In our new Lorenz-Mie lookup table, we tabulate single scattering by an ensemble of coated isotropic spheres representing oceanic phytoplankton at wavelengths from 0.355 µm. The lookup table covers phytoplankton particles with radii in the range of 0.15-100 µm at an increase of up to 104 in computational speed compared to single-scattering calculations. The allowed complex refractive indices range from 1.05 to 1.24 for the shell's real part, from 10-7 to 0.3 for the shell's imaginary part, from 0 to 0.001 for the core's imaginary part, and equal to 1.02 for the core's real part. We show that we precisely compute inherent optical properties for the phytoplankton size distributions ranging up to 5 µm for the effective radius and up to 0.6 for the effective variance. We test wavelengths from 0.355 to 1.065 µm and find that all the inherent optical properties of interest agree with the single-scattering calculations to within 1% for 99.9% of cases. We also provide an example of using the lookup table to reproduce the phytoplankton optical datasets listed in the PANGAEA database for synthetic hyperspectral algorithm development. The table together with C++, Fortran, MATLAB, and Python codes to apply different complex refractive indices and phytoplankton size distributions is freely available online.

2.
J Oral Rehabil ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894554

RESUMO

BACKGROUND: Activation of ß2 adrenergic receptors reduces cutaneous mechanical pain thresholds in rats. While ß2 adrenergic receptor activation may contribute to mechanisms that underlie temporomandibular joint pain, its effect on masticatory muscle pain sensitivity is uncertain. OBJECTIVES: The current study sought to determine the extent to which ß adrenergic receptors are expressed by masticatory muscle afferent fibres, and to assess the effect of local activation of these receptors on the mechanical sensitivity of masticatory muscle afferent fibres in rats. METHODS: Trigeminal ganglion neurons that innervate the rat (n = 12) masseter muscle and lower lip were identified by tissue injection of fluorescent dyes and were then stained with antibodies against ß1 or ß2 adrenergic receptors. Extracellular recordings from 60 trigeminal ganglion neurons that innervate the masticatory muscle were undertaken in a second group of anaesthetised rats of both sexes (n = 37) to assess afferent mechanical activation thresholds. Thresholds were assessed before and after injection of the ß adrenergic receptor agonists into masticatory muscle. RESULTS: ß1 and ß2 adrenergic receptor expression was greater in labial skin than in masticatory muscle ganglion neurons (p < .05, one-way ANOVA, Holm-Sidak test). There was a higher expression of ß2 adrenergic receptors in masticatory muscle ganglion neurons in males than in females. The mixed ß agonist isoproterenol increased afferent mechanical activation threshold in male but not female rats (p < .05, Mann-Whitney test). In male rats, salbutamol, a ß2 selective agonist, also increased afferent mechanical activation threshold but hydralazine, a vasodilator, did not (p < .05, Mann-Whitney test). CONCLUSION: Activation of ß2 adrenergic receptors decreases the mechanical sensitivity of masticatory muscle afferent fibres in a sex-related manner.

3.
Opt Lett ; 48(1): 13-16, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563362

RESUMO

Combined lidar and polarimeter retrievals of aerosol, cloud, and ocean microphysical properties involve single-scattering cloud calculations that are time consuming. We create a look-up table to speed up these calculations for water droplets in the atmosphere. In our new Lorenz-Mie look-up table we tabulate the light scattering by an ensemble of homogeneous isotropic spheres at wavelengths starting from 0.35 µm. The look-up table covers liquid water cloud particles with radii in the range of 0.001-500 µm while gaining an increase of up to 104 in computational speed. The covered complex refractive indices range from 1.25 to 1.36 for the real part and from 0 to 0.001 for the imaginary part. We show that we can precisely compute inherent optical properties for the particle size distributions ranging up to 100 µm for the effective radius and up to 0.6 for the effective variance. We test wavelengths from 0.35 to 2.3 µm and find that the elements of the normalized scattering matrix as well as the asymmetry parameter, the absorption, backscatter, extinction, and scattering coefficients are precise to within 1% for 96.7%-100% of cases depending on the inherent optical property. We also provide an example of using the look-up table with in situ measurements to determine agreement with remote sensing. The table together with C++, Fortran, MATLAB, and Python codes to interpolate the complex refractive index and apply different particle size distributions are freely available online.

4.
J Oral Rehabil ; 49(11): 1115-1126, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36098708

RESUMO

BACKGROUND: Temporomandibular disorders (TMD) are diagnosed based on symptom presentation and, like other functional pain disorders, often lack definitive pathology. There is a strong association between elevated stress levels and the severity of TMD-related pain, which suggests that alterations in autonomic tone may contribute to this pain condition. OBJECTIVES: This narrative review examines the association between altered autonomic function and pain in TMD. METHODS: Relevant articles were identified by searching PubMed and through the reference list of those studies. RESULTS: TMD sufferers report an increased incidence of orthostatic hypotension. As in other chronic musculoskeletal pain conditions, TMD is associated with increased sympathetic tone, diminished baroreceptor reflex sensitivity and decreased parasympathetic tone. It remains to be determined whether ongoing pain drives these autonomic changes and/or is exacerbated by them. To examine whether increased sympathetic tone contributes to TMD-related pain through ß2 adrenergic receptor activation, clinical trials with the beta blocker propranolol have been undertaken. Although evidence from small studies suggested propranolol reduced TMD-related pain, a larger clinical trial did not find a significant effect of propranolol treatment. This is consistent with human experimental pain studies that were unable to demonstrate an effect of ß2 adrenergic receptor activation or inhibition on masticatory muscle pain. In preclinical models of temporomandibular joint arthritis, ß2 adrenergic receptor activation appears to contribute to inflammation and nociception, whereas in masticatory muscle, α1 adrenergic receptor activation has been found to induce mechanical sensitisation. Some agents used to treat TMD, such as botulinum neurotoxin A, antidepressants and α2 adrenergic receptor agonists, may interact with the autonomic nervous system as part of their analgesic mechanism. CONCLUSION: Even if dysautonomia turns out to be a consequence rather than a causative factor of painful TMD, the study of its role has opened up a greater understanding of the pathogenesis of this condition.


Assuntos
Toxinas Botulínicas Tipo A , Transtornos da Articulação Temporomandibular , Agonistas Adrenérgicos/uso terapêutico , Analgésicos/uso terapêutico , Antidepressivos/uso terapêutico , Sistema Nervoso Autônomo , Toxinas Botulínicas Tipo A/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Dor/complicações , Dor/tratamento farmacológico , Propranolol/uso terapêutico , Receptores Adrenérgicos/uso terapêutico
5.
Opt Express ; 29(3): 4504-4522, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771027

RESUMO

We developed a fast and accurate polynomial based atmospheric correction (POLYAC) algorithm for hyperspectral radiometric measurements, which parameterizes the atmospheric path radiances using aerosol properties retrieved from co-located multi-wavelength multi-angle polarimeter (MAP) measurements. This algorithm has been applied to co-located spectrometer for planetary exploration (SPEX) airborne and research scanning polarimeter (RSP) measurements, where SPEX airborne was used as a proxy of hyperspectral radiometers, and RSP as the MAP. The hyperspectral remote sensing reflectance obtained from POLYAC is accurate when compared to Aerosol Robotic Network (AERONET), and Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. POLYAC provides a robust alternative atmospheric correction algorithm for hyperspectral or multi-spectral radiometric measurements for scenes involving coastal oceans and/or absorbing aerosols, where traditional atmospheric correction algorithms are less reliable.

6.
Cephalalgia ; 41(11-12): 1249-1261, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34148407

RESUMO

BACKGROUND: Although the role of glutamate in migraine pathogenesis remains uncertain, there has been significant interest in the development of drug candidates that target glutamate receptors. Activation of trigeminovascular afferent fibers is now recognized as a crucial step to the onset of a migraine episode. New evidence suggests a dysfunction in peripheral glutamate regulation may play a role in this process. OBJECTIVE: To provide a narrative review of the role of peripheral glutamate dysfunction in migraine. METHOD: A review of recent literature from neurobiological, pharmacological and genomic studies was conducted to support peripheral glutamate dysfunction as a potential element in migraine pathogenesis. RESULTS: Studies in rats suggest that elevated blood glutamate mechanically sensitizes trigeminal afferent fibers and stimulates the release of calcitonin-gene related peptide and other neuropeptides to promote and maintain neurogenic inflammation. These effects may be driven by upregulation of glutamate receptors, and modifications to reuptake and metabolic pathways of glutamate. Furthermore, genome wide association studies have found polymorphisms in glutamate receptor and transporter genes that are associated with migraine. CONCLUSION: The role of peripheral glutamate signalling in the onset and maintenance of migraine is not completely elucidated and future studies are still needed to confirm its role in migraine pathogenesis.


Assuntos
Transtornos de Enxaqueca , Neuropeptídeos , Animais , Peptídeo Relacionado com Gene de Calcitonina , Estudo de Associação Genômica Ampla , Ácido Glutâmico , Transtornos de Enxaqueca/genética , Ratos
7.
J Oral Rehabil ; 48(1): 35-44, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33031568

RESUMO

BACKGROUND: In skeletal muscle, free nerve endings are mostly located within the connective tissue. However, the distribution of sensory afferent fibres in healthy human masseter muscle tissues has not been studied. OBJECTIVES: Primarily to investigate human masseter muscle nerve fibre densities as well as expression of NR2B receptors, substance P (SP) and nerve growth factor (NGF), and secondarily to compare this between a) nerve fibres associated with myocytes and within connective tissue; b) sexes; and c) ages. METHODS: Microbiopsies of the masseter muscle were obtained from 60 sex- and age-matched healthy participants. Biopsy sections were analysed using immunohistochemistry and were visualised with a Leica TCS SPE confocal microscope. The Mann-Whitney U test was used for statistical analyses. RESULTS: The density of nerve fibres within connective tissue was significantly greater than in nerve fibres associated with myocytes (P < .001). Nerve fibres within connective tissue expressed SP alone or together with NR2B significantly more often than those associated with myocytes (P < .001). The frequency of nerve fibres, which expressed SP alone or in combination with NR2B or NGF, was significantly greater in women than in men (P < .050). Moreover, the co-expression of the three markers together was inversely correlated with age in women (P < .002). CONCLUSIONS: There is a higher density and greater expression of sensory nerve fibres within the connective tissue than associated with myocytes in healthy human masseter muscle. This suggests that nerve fibres within connective tissue are more involved in nociception than nerve fibres associated with myocytes.


Assuntos
Músculo Masseter , Substância P , Feminino , Humanos , Masculino , Músculo Esquelético , Fibras Nervosas , Fator de Crescimento Neural
8.
Atmos Res ; 2392020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32494092

RESUMO

The Research Scanning Polarimeter (RSP) is an airborne along-track scanner measuring the polarized and total reflectances with high angular resolution. It allows for accurate characterization of liquid water cloud droplet sizes using the rainbow structure in the polarized reflectance. RSP's observations also provide constraints on the cumulus cloud's 2D cross section, yielding estimates of its geometric shape. In this study for the first time we evaluate the possibility to retrieve vertical profiles of microphysical characteristics along the cloud side by combining these micro- and macrophysical retrieval methods. First we constrain cloud's geometric shape, then for each point on the bright side of its surface we collect data from different scans to obtain the multi-angle polarized reflectance at that point. The rainbow structures of the reflectances from multiple points yield the corresponding droplet size distributions (DSDs), which are then combined into vertical profiles. We present the results of testing the proposed profiling algorithm on simulated data obtained using large eddy simulations and 3D radiative transfer computations. The virtual RSP measurements were used for retrieval of DSD profiles, which then were compared to the actual data from the LES-model output. A cumulus congestus cloud was selected for these tests in preparation for analysis of real measurements made during the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex). We demonstrate that the use of the non-parametric Rainbow Fourier Transform (RFT) allows for adequate retrieval of the complex altitude-dependent bimodal structure of cloud DSDs.

9.
Opt Express ; 27(4): A158-A170, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876057

RESUMO

Stratospheric aerosols that are caused by a major volcanic eruption can serve as a valuable test of global climate models, as well as severely complicate tropospheric-aerosol monitoring from space. In either case, it is highly desirable to have accurate global information on the optical thickness, size, and composition of volcanic aerosols. We report sensitivity study results, which reveal the implications of making precise multi-angle photopolarimetric measurements in a 1.378-µm spectral channel residing within a strong water-vapor absorption band. We demonstrate that, under favorable conditions, such measurements would enable near-perfect retrievals of the optical thickness, effective radius, and refractive index of stratospheric aerosols. Besides enabling accurate retrievals of volcanic aerosols, such measurements can also be used to monitor man-made particulates injected in the stratosphere for geoengineering purposes.

10.
Appl Opt ; 58(3): 650-669, 2019 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-30694252

RESUMO

In early 2013, three airborne polarimeters were flown on the high altitude NASA ER-2 aircraft in California for the Polarimeter Definition Experiment (PODEX). PODEX supported the pre-formulation NASA Aerosol-Cloud-Ecosystem (ACE) mission, which calls for an imaging polarimeter in polar orbit (among other instruments) for the remote sensing of aerosols, oceans, and clouds. Several polarimeter concepts exist as airborne prototypes, some of which were deployed during PODEX as a capabilities test. Two of those instruments to date have successfully produced Level 1 (georegistered, calibrated radiance and polarization) data from that campaign: the Airborne Multiangle Spectropolarimetric Imager (AirMSPI) and the Research Scanning Polarimeter (RSP). We compared georegistered observations of a variety of scene types by these instruments to test whether Level 1 products agreed within stated uncertainties. Initial comparisons found radiometric agreement, but polarimetric biases beyond measurement uncertainties. After subsequent updates to calibration, georegistration, and the measurement uncertainty models, observations from the instruments now largely agree within stated uncertainties. However, the 470 nm reflectance channels have a roughly +6% bias of AirMSPI relative to RSP, beyond expected measurement uncertainties. We also find that observations of dark (ocean) scenes, where polarimetric uncertainty is expected to be largest, do not agree within stated polarimetric uncertainties. Otherwise, AirMSPI and RSP observations are consistent within measurement uncertainty expectations, providing credibility for the subsequent creation of Level 2 (geophysical product) data from these instruments, and comparison thereof. The techniques used in this work can also form a methodological basis for other intercomparisons, for example, of the data gathered during the recent Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign, carried out in October and November of 2017 with four polarimeters (including AirMSPI and RSP).

11.
Appl Opt ; 58(21): 5695-5719, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31503878

RESUMO

To improve our understanding of the complex role of aerosols in the climate system and on air quality, measurements are needed of optical and microphysical aerosol. From many studies, it has become evident that a satellite-based multiangle, multiwavelength polarimeter will be essential to provide such measurements. Here, high accuracy (∼0.003) on the degree of linear polarization (DoLP) measurements is important to retrieve aerosol properties with an accuracy needed to advance our understanding of the aerosol effect on climate. SPEX airborne, a multiangle hyperspectral polarimeter, has been developed for observing and characterizing aerosols from NASA's high-altitude research aircraft ER-2. It delivers measurements of radiance and DoLP at visual wavelengths with a spectral resolution of 3 and 7-30 nm, respectively, for radiance and polarization, at nine fixed equidistant viewing angles from -56° to +56° oriented along the ground track, and a swath of 7° oriented across-track. SPEX airborne uses spectral polarization modulation to determine the state of linear polarization of scattered sunlight. This technique has been developed in the Netherlands and has been demonstrated with ground-based instruments. SPEX airborne serves as a demonstrator for a family of space-based SPEX instruments that have the ability to measure and characterize atmospheric aerosol by multiangle hyperspectral polarimetric imaging remotely from a satellite platform. SPEX airborne was calibrated radiometrically and polarimetrically using Jet Propulsion Laboratory (JPL) facilities including the Polarization Stage Generator-2 (PSG-2), which is designed for polarimetric calibration and validation of the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Using the PSG-2, the accuracy of the SPEX airborne DoLP measurements in the laboratory setup is found to be 0.002-0.004. Radiometric calibration is realized with an estimated accuracy of 4%. In 2017, SPEX airborne took part in the "Aerosol Characterization from Polarimeters and Lidar" campaign on the ER-2 that included four polarimeters and two lidars. Polarization measurements of SPEX airborne and the coflying Research Scanning Polarimeter (RSP), recorded during the campaign, were compared and display root-mean-square (RMS) differences ranging from 0.004 (at 555 nm) up to 0.02 (at 410 nm). For radiance measurements, excellent agreement between SPEX airborne and RSP is obtained with an RMS difference of ∼4%. The lab- and flight-performance values for polarization are similar to those recently published for AirMSPI, where also an intercomparison with RSP was made using data from field campaigns in 2013. The intercomparison of radiometric and polarimetric data both display negligible bias. The in-flight comparison results provide verification of SPEX airborne's capability to deliver high-quality data.

12.
Rev Geophys ; 56(2): 409-453, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30148283

RESUMO

The cloud droplet number concentration (N d) is of central interest to improve the understanding of cloud physics and for quantifying the effective radiative forcing by aerosol-cloud interactions. Current standard satellite retrievals do not operationally provide N d, but it can be inferred from retrievals of cloud optical depth (τ c) cloud droplet effective radius (r e) and cloud top temperature. This review summarizes issues with this approach and quantifies uncertainties. A total relative uncertainty of 78% is inferred for pixel-level retrievals for relatively homogeneous, optically thick and unobscured stratiform clouds with favorable viewing geometry. The uncertainty is even greater if these conditions are not met. For averages over 1° ×1° regions the uncertainty is reduced to 54% assuming random errors for instrument uncertainties. In contrast, the few evaluation studies against reference in situ observations suggest much better accuracy with little variability in the bias. More such studies are required for a better error characterization. N d uncertainty is dominated by errors in r e, and therefore, improvements in r e retrievals would greatly improve the quality of the N d retrievals. Recommendations are made for how this might be achieved. Some existing N d data sets are compared and discussed, and best practices for the use of N d data from current passive instruments (e.g., filtering criteria) are recommended. Emerging alternative N d estimates are also considered. First, new ideas to use additional information from existing and upcoming spaceborne instruments are discussed, and second, approaches using high-quality ground-based observations are examined.

13.
Opt Express ; 26(7): 8968-8989, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715856

RESUMO

Ocean color remote sensing is an important tool to monitor water quality and biogeochemical conditions of ocean. Atmospheric correction, which obtains water-leaving radiance from the total radiance measured by satellite-borne or airborne sensors, remains a challenging task for coastal waters due to the complex optical properties of aerosols and ocean waters. In this paper, we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters, which uses coupled atmosphere and ocean radiative transfer model to fit polarized radiance measurements at multiple viewing angles and multiple wavelengths. Ocean optical properties are characterized by a generalized bio-optical model with direct accounting for the absorption and scattering of phytoplankton, colored dissolved organic matter (CDOM) and non-algal particles (NAP). Our retrieval algorithm can accurately determine the water-leaving radiance and aerosol properties for coastal waters, and may be used to improve the atmospheric correction when apply to a hyperspectral ocean color instrument.

14.
Somatosens Mot Res ; 35(2): 86-94, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29848210

RESUMO

Previous research findings have suggested an important role for acid sensing ion channels (ASICs) in muscle pain mechanisms. This study was conducted to determine if masticatory muscle afferent fibres express ASICs, if there are sex differences in this expression, and to compare the effects of low pH and hypertonic saline on afferent fibres that innervate the masticatory muscle in vivo. Immunohistochemistry methods were applied to examine the expression of ASICs in trigeminal ganglion neurons, while in vivo electrophysiology techniques were employed to examine changes in masticatory muscle afferent fibre excitability. Both ASIC1 and ASIC3 were expressed by predominantly larger masticatory muscle ganglion neurons, but the frequency of ASIC3 expression (56%) was significantly greater than ASIC1 (35%). No sex-related differences in expression were identified. Injection of pH 5.8, but not pH 6.8, phosphate buffered saline evoked afferent discharges that were significantly greater than those evoked by pH 7.4 buffer (control). Since ASIC3 channels are not activated until the pH is around 6, these results indicate that activation of both channels contributes to excitation of masticatory muscle afferent fibres. The results further show that many masticatory muscle afferent fibres, which respond to low pH, are low threshold mechanoreceptors. These findings may explain why injection of low pH solutions into the masticatory muscles of healthy humans is not associated with significant muscle pain.


Assuntos
Músculos da Mastigação/fisiologia , Neurônios Aferentes/fisiologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Fenômenos Eletrofisiológicos , Potenciais Evocados/fisiologia , Feminino , Concentração de Íons de Hidrogênio , Masculino , Estimulação Física , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Fatores de Tempo
15.
Appl Opt ; 57(16): 4499-4513, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877398

RESUMO

The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), a precursor to the future Multi-Angle Imager for Aerosols satellite instrument, is a remote-sensing instrument for the characterization of atmospheric aerosols and clouds. To help discriminate between different aerosol particle types, which is crucial to improve our understanding of their impact on climate and air quality, AirMSPI acquires imagery over multiple view angles in the ultraviolet, visible, and near-infrared, and it employs dual photoelastic modulators (PEMs) to target an uncertainty requirement of ±0.005 in the degree of linear polarization (DoLP) at selected wavelengths. Laboratory polarimetric calibrations using a second-generation Polarization State Generator-2 (PSG-2) and validation measurements at 0

16.
Remote Sens Environ ; 206: 375-390, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414567

RESUMO

Comprehensive polarimetric closure is demonstrated using observations from two in-situ polarimeters and Vector Radiative Transfer (VRT) modeling. During the Ship-Aircraft Bio-Optical Research (SABOR) campaign, the novel CCNY HyperSAS-POL polarimeter was mounted on the bow of the R/V Endeavor and acquired hyperspectral measurements from just above the surface of the ocean, while the NASA GISS Research Scanning Polarimeter was deployed onboard the NASA LaRC's King Air UC-12B aircraft. State-of-the-art, ancillary measurements were used to characterize the atmospheric and marine contributions in the VRT model, including those of the High Spectral Resolution Lidar (HSRL), the AErosol RObotic NETwork for Ocean Color (AERONET-OC), a profiling WETLabs ac-9 spectrometer and the Multi-spectral Volume Scattering Meter (MVSM). An open-ocean and a coastal scene are analyzed, both affected by complex aerosol conditions. In each of the two cases, it is found that the model is able to accurately reproduce the Stokes components measured simultaneously by each polarimeter at different geometries and viewing altitudes. These results are mostly encouraging, considering the different deployment strategies of RSP and HyperSAS-POL, which imply very different sensitivities to the atmospheric and ocean contributions, and open new opportunities in above-water polarimetric measurements. Furthermore, the signal originating from each scene was propagated to the top of the atmosphere to explore the sensitivity of polarimetric spaceborne observations to changes in the water type. As expected, adding polarization as a measurement capability benefits the detection of such changes, reinforcing the merits of the full-Stokes treatment in modeling the impact of atmospheric and oceanic constituents on remote sensing observations.

17.
Phys Rep ; 632: 1-75, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29657355

RESUMO

A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

18.
Geophys Res Lett ; 43(16): 8783-8790, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30002565

RESUMO

We demonstrate that multi-angle polarization measurements in the near-UV and blue part of the spectrum are very well suited for passive remote sensing of aerosol layer height. For this purpose we use simulated measurements with different set-ups (different wavelength ranges, with and without polarization, different polarimetric accuracies) as well as airborne measurements from the Research Scanning Polarimeter (RSP) obtained over the continental USA. We find good agreement of the retrieved aerosol layer height from RSP with measurements from the Cloud Physics Lidar (CPL) showing a mean absolute difference of less than 1 km. Furthermore, we found that the information on aerosol layer height is provided for large part by the multi-angle polarization measurements with high accuracy rather than the multi-angle intensity measurements. The information on aerosol layer height is significantly decreased when the shortest RSP wavelength (410 nm) is excluded from the retrieval and is virtually absent when 550 nm is used as shortest wavelength.

19.
Geophys Res Lett ; 43(9): 4586-4593, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29618850

RESUMO

A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops (dre /dz) from airborne shortwave reflectance measurements and lidar. Values of dre /dz are about -6 µm/km for cloud tops below the homogeneous freezing level, increasing to near 0 µm/km above the estimated level of neutral buoyancy. Retrieved dre /dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases. This is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present, and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud-top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation.

20.
J Opt Soc Am A Opt Image Sci Vis ; 33(6): 1126-32, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27409440

RESUMO

The imperative to quantify the Earth's electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting-vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA