Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(43): 12192-12197, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791005

RESUMO

Intestinal stem cells (ISCs) are maintained by a niche mechanism, in which multiple ISCs undergo differential fates where a single ISC clone ultimately occupies the niche. Importantly, mutations continually accumulate within ISCs creating a potential competitive niche environment. Here we use single cell lineage tracing following stochastic transforming growth factor ß receptor 2 (TgfßR2) mutation to show cell autonomous effects of TgfßR2 loss on ISC clonal dynamics and differentiation. Specifically, TgfßR2 mutation in ISCs increased clone survival while lengthening times to monoclonality, suggesting that Tgfß signaling controls both ISC clone extinction and expansion, independent of proliferation. In addition, TgfßR2 loss in vivo reduced crypt fission, irradiation-induced crypt regeneration, and differentiation toward Paneth cells. Finally, altered Tgfß signaling in cultured mouse and human enteroids supports further the in vivo data and reveals a critical role for Tgfß signaling in generating precursor secretory cells. Overall, our data reveal a key role for Tgfß signaling in regulating ISCs clonal dynamics and differentiation, with implications for cancer, tissue regeneration, and inflammation.


Assuntos
Diferenciação Celular/genética , Celulas de Paneth/citologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Células-Tronco/citologia , Animais , Linhagem da Célula/genética , Rastreamento de Células , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Camundongos , Mutação , Celulas de Paneth/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Análise de Célula Única/métodos , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo
2.
Genome Biol Evol ; 16(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411226

RESUMO

Delayed fatherhood results in a higher risk of inheriting a new germline mutation that might result in a congenital disorder in the offspring. In particular, some FGFR3 mutations increase in frequency with age, but there are still a large number of uncharacterized FGFR3 mutations that could be expanding in the male germline with potentially early- or late-onset effects in the offspring. Here, we used digital polymerase chain reaction to assess the frequency and spatial distribution of 10 different FGFR3 missense substitutions in the sexually mature male germline. Our functional assessment of the receptor signaling of the variants with biophysical methods showed that 9 of these variants resulted in a higher activation of the receptor´s downstream signaling, resulting in 2 different expansion behaviors. Variants that form larger subclonal expansions in a dissected postmortem testis also showed a positive correlation of the substitution frequency with the sperm donor's age, and a high and ligand-independent FGFR3 activation. In contrast, variants that measured high FGFR3 signaling and elevated substitution frequencies independent of the donor's age did not result in measurable subclonal expansions in the testis. This suggests that promiscuous signal activation might also result in an accumulation of mutations before the sexual maturation of the male gonad with clones staying relatively constant in size throughout time. Collectively, these results provide novel insights into our understanding of the mutagenesis of driver mutations and their resulting mosaicism in the male germline with important consequences for the transmission and recurrence of associated disorders.


Assuntos
Idade Paterna , Sêmen , Masculino , Humanos , Mutação , Testículo , Espermatozoides , Mutação em Linhagem Germinativa
3.
BMC Genomics ; 10: 422, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19740431

RESUMO

BACKGROUND: Allele-specific expression (ASE) assays can be used to identify cis, trans, and cis-by-trans regulatory variation. Understanding the source of expression variation has important implications for disease susceptibility, phenotypic diversity, and adaptation. While ASE is commonly measured via relative fluorescence at a SNP, next generation sequencing provides an opportunity to measure ASE in an accurate and high-throughput manner using read counts. RESULTS: We introduce a Solexa-based method to perform large numbers of ASE assays using only a single lane of a Solexa flowcell. In brief, transcripts of interest, which contain a known SNP, are PCR enriched and barcoded to enable multiplexing. Then high-throughput sequencing is used to estimate allele-specific expression using sequencing counts. To validate this method, we measured the allelic bias in a dilution series and found high correlations between measured and expected values (r>0.9, p < 0.001). We applied this method to a set of 5 genes in a Drosophila simulans parental mix, F1 and introgression and found that for these genes the majority of expression divergence can be explained by cis-regulatory variation. CONCLUSION: We present a new method with the capacity to measure ASE for large numbers of assays using as little as one lane of a Solexa flowcell. This will be a valuable technique for molecular and population genetic studies, as well as for verification of genome-wide data sets.


Assuntos
Alelos , Perfilação da Expressão Gênica/métodos , Animais , Drosophila/genética , Feminino , Genes de Insetos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único
4.
Genetics ; 167(1): 171-85, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15166145

RESUMO

DNA diversity in two segments of the Notch locus was surveyed in four populations of Drosophila melanogaster and two of D. simulans. In both species we observed evidence of non-steady-state evolution. In D. simulans we observed a significant excess of intermediate frequency variants in a non-African population. In D. melanogaster we observed a disparity between levels of sequence polymorphism and divergence between one of the Notch regions sequenced and other neutral X chromosome loci. The striking feature of the data is the high level of synonymous site divergence at Notch, which is the highest reported to date. To more thoroughly investigate the pattern of synonymous site evolution between these species, we developed a method for calibrating preferred, unpreferred, and equal synonymous substitutions by the effective (potential) number of such changes. In D. simulans, we find that preferred changes per "site" are evolving significantly faster than unpreferred changes at Notch. In contrast we observe a significantly faster per site substitution rate of unpreferred changes in D. melanogaster at this locus. These results suggest that positive selection, and not simply relaxation of constraint on codon bias, has contributed to the higher levels of unpreferred divergence along the D. melanogaster lineage at Notch.


Assuntos
DNA/química , Drosophila melanogaster/genética , Drosophila/genética , Animais , Linhagem da Célula , Mapeamento Cromossômico , Proteínas de Drosophila , Evolução Molecular , Variação Genética , Proteínas de Membrana/genética , Modelos Genéticos , Modelos Estatísticos , Dados de Sequência Molecular , Mutação , Polimorfismo Genético , Receptores Notch , Análise de Sequência de DNA , Especificidade da Espécie
5.
Theor Popul Biol ; 66(4): 381-91, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15560915

RESUMO

Wahlund's inequality informally states that if a structured and an unstructured population have the same allele frequencies at a locus, the structured population contains more homozygotes. We show that this inequality holds generally for ploidy level P, that is, the structured population has more P-polyhomozygotes. Further, for M randomly chosen loci (M >or= 2), the structured population is also expected to contain more M-multihomozygotes than an unstructured population with the same single-locus homozygosities. The extended inequalities suggest multilocus identity coefficients analogous to F(ST). Using microsatellite genotypes from human populations, we demonstrate that the multilocus Wahlund inequality can explain a positive bias in "identity-in-state excess".


Assuntos
Modelos Teóricos , Poliploidia , Mapeamento Cromossômico , Homozigoto , Repetições de Microssatélites/genética
6.
Bioinformatics ; 19 Suppl 1: i74-80, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12855440

RESUMO

MOTIVATION: Chromosomal segments that share common ancestry, either through genomic duplication or species divergence, are said to be segmental homologs of one another. Their identification allows researchers to leverage knowledge of model organisms for use in other systems and is of value for studies of genome evolution. However, identification and statistical evaluation of segmental homologies can be a challenge when the segments are highly diverged. RESULTS: We describe a flexible dynamic programming algorithm for the identification of segments having multiple homologous features. We model the probability of observing putative segmental homologies by chance and incorporate our findings into the parameterization of the algorithm and the statistical evaluation of its output. Combined, these findings allow segmental homologies to be identified in comparisons within and between genomic maps in a rigorous, rapid, and automated fashion.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Modelos Genéticos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Arabidopsis/genética , Sequência de Bases , Variação Genética , Genoma , Modelos Estatísticos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA