Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38152862

RESUMO

The strategic location of North Africa has made the region the core of a wide range of human demographic events, including migrations, bottlenecks, and admixture processes. This has led to a complex and heterogeneous genetic and cultural landscape, which remains poorly studied compared to other world regions. Whole-exome sequencing is particularly relevant to determine the effects of these demographic events on current-day North Africans' genomes, since it allows to focus on those parts of the genome that are more likely to have direct biomedical consequences. Whole-exome sequencing can also be used to assess the effect of recent demography in functional genetic variation and the efficacy of natural selection, a long-lasting debate. In the present work, we use newly generated whole-exome sequencing and genome-wide array genotypes to investigate the effect of demography in functional variation in 7 North African populations, considering both cultural and demographic differences and with a special focus on Amazigh (plur. Imazighen) groups. We detect genetic differences among populations related to their degree of isolation and the presence of bottlenecks in their recent history. We find differences in the functional part of the genome that suggest a relaxation of purifying selection in the more isolated groups, allowing for an increase of putatively damaging variation. Our results also show a shift in mutational load coinciding with major demographic events in the region and reveal differences within and between cultural and geographic groups.


Assuntos
Variação Genética , Genética Populacional , Humanos , População do Norte da África , Genoma , Demografia
2.
Hum Genet ; 142(9): 1327-1343, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311904

RESUMO

We provide the first whole genome Copy Number Variant (CNV) study addressing Roma, along with reference populations from South Asia, the Middle East and Europe. Using CNV calling software for short-read sequence data, we identified 3171 deletions and 489 duplications. Taking into account the known population history of the Roma, as inferred from whole genome nucleotide variation, we could discern how this history has shaped CNV variation. As expected, patterns of deletion variation, but not duplication, in the Roma followed those obtained from single nucleotide polymorphisms (SNPs). Reduced effective population size resulting in slightly relaxed natural selection may explain our observation of an increase in intronic (but not exonic) deletions within Loss of Function (LoF)-intolerant genes. Over-representation analysis for LoF-intolerant gene sets hosting intronic deletions highlights a substantial accumulation of shared biological processes in Roma, intriguingly related to signaling, nervous system and development features, which may be related to the known profile of private disease in the population. Finally, we show the link between deletions and known trait-related SNPs reported in the genome-wide association study (GWAS) catalog, which exhibited even frequency distributions among the studied populations. This suggests that, in general human populations, the strong association between deletions and SNPs associated to biomedical conditions and traits could be widespread across continental populations, reflecting a common background of potentially disease/trait-related CNVs.


Assuntos
Variações do Número de Cópias de DNA , Roma (Grupo Étnico) , Humanos , Estudo de Associação Genômica Ampla/métodos , Roma (Grupo Étnico)/genética , Fenótipo , Seleção Genética , Polimorfismo de Nucleotídeo Único
3.
Mol Biol Evol ; 38(7): 2804-2817, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33713133

RESUMO

Demographic history plays a major role in shaping the distribution of genomic variation. Yet the interaction between different demographic forces and their effects in the genomes is not fully resolved in human populations. Here, we focus on the Roma population, the largest transnational ethnic minority in Europe. They have a South Asian origin and their demographic history is characterized by recent dispersals, multiple founder events, and extensive gene flow from non-Roma groups. Through the analyses of new high-coverage whole exome sequences and genome-wide array data for 89 Iberian Roma individuals together with forward simulations, we show that founder effects have reduced their genetic diversity and proportion of rare variants, gene flow has counteracted the increase in mutational load, runs of homozygosity show ancestry-specific patterns of accumulation of deleterious homozygotes, and selection signals primarily derive from preadmixture adaptation in the Roma population sources. The present study shows how two demographic forces, bottlenecks and admixture, act in opposite directions and have long-term balancing effects on the Roma genomes. Understanding how demography and gene flow shape the genome of an admixed population provides an opportunity to elucidate how genomic variation is modeled in human populations.


Assuntos
Demografia , Efeito Fundador , Variação Genética , Genoma Humano , Roma (Grupo Étnico)/genética , Adaptação Biológica , Humanos , Acúmulo de Mutações , Seleção Genética
4.
J Exp Biol ; 225(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35332918

RESUMO

The coping style of an individual in relation to potentially dangerous situations has been suggested to be inherited in a polygenic fashion, SERT being one of the candidate genes. In this study, we assessed in free-living great tits (Parus major) the association between SNP290 in the SERT promoter and three standard fear-related behaviors: the response of the birds to a black-and-white flag fixed to the top of the nest box, distress calling rate of the birds in the hand once captured and the hissing call of incubating females when approached by a predator. We found a strong association between SNP290 polymorphism and the three risk-taking behaviors, with birds with genotype CT entering the nest box with the flag faster and displaying more distress calls and fewer hissing calls. CT birds could therefore be described as more proactive than CC individuals. These results also suggest that hissing behavior should be regarded as a fear-induced shy behavior, and confirm that SERT has an important function in relation to risk aversion behaviors and coping style.


Assuntos
Passeriformes , Adaptação Psicológica , Animais , Feminino , Genótipo , Humanos , Passeriformes/genética , Polimorfismo Genético , Assunção de Riscos
5.
Mol Biol Rep ; 49(8): 7601-7609, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35657453

RESUMO

BACKGROUND: STR allele frequency databases from populations are necessary to take full advantage of the increased power of discrimination offered by massively parallel sequencing (MPS) platforms. MATERIAL AND METHODS: For this reason, we sequenced 58 STRs (aSTRs, X-STRs, and Y-STRs) and 94 identity informative SNPs (iiSNPs) on 105 Mestizo (admixed) individuals from Monterrey City (Northeast, Mexico), with the Primer Set-A of the ForenSeq™ DNA Signature Prep Kit. RESULTS: Most of the STR markers were in Hardy Weinberg equilibrium, with a few exceptions. We found 346 different length-based alleles for these 58 STRs; nevertheless, they became 528 alleles when the sequence was assessed. The combined power of discrimination from autosomal STRs (aSTRs) was -virtually- 100% in both length and sequence-based alleles, while the power of exclusion was 99.9999999976065 and 99.9999999999494%, respectively. Haplotypes based on X-STRs and Y-STRs showed 100% of discriminatory capacity. CONCLUSIONS: These results provide -for the first time- forensic genomic population data from Mexico necessary for interpretation in kinship and criminal analyses.


Assuntos
Impressões Digitais de DNA , Polimorfismo de Nucleotídeo Único , DNA , Frequência do Gene/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , México , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
6.
PLoS Genet ; 15(9): e1008417, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545809

RESUMO

The Roma population is the largest transnational ethnic minority in Europe, characterized by a linguistic, cultural and historical heterogeneity. Comparative linguistics and genetic studies have placed the origin of European Roma in the Northwest of India. After their migration across Persia, they entered into the Balkan Peninsula, from where they spread into Europe, arriving in the Iberian Peninsula in the 15th century. Their particular demographic history has genetic implications linked to rare and common diseases. However, the South Asian source of the proto-Roma remains still untargeted and the West Eurasian Roma component has not been yet deeply characterized. Here, in order to describe both the South Asian and West Eurasian ancestries, we analyze previously published genome-wide data of 152 European Roma and 34 new Iberian Roma samples at a fine-scale and haplotype-based level, with special focus on the Iberian Roma genetic substructure. Our results suggest that the putative origin of the proto-Roma involves a Punjabi group with low levels of West Eurasian ancestry. In addition, we have identified a complex West Eurasian component (around 65%) in the Roma, as a result of the admixture events occurred with non-proto-Roma populations between 1270-1580. Particularly, we have detected the Balkan genetic footprint in all European Roma, and the Baltic and Iberian components in the Northern and Western Roma groups, respectively. Finally, our results show genetic substructure within the Iberian Roma, with different levels of West Eurasian admixture, as a result of the complex historical events occurred in the Peninsula.


Assuntos
Etnicidade/genética , Roma (Grupo Étnico)/genética , Povo Asiático/genética , Efeito Fundador , Fluxo Gênico/genética , Variação Genética/genética , Genética Populacional , Haplótipos/genética , Migração Humana , Humanos , Grupos Minoritários , População Branca/genética
7.
Mol Biol Evol ; 37(11): 3175-3187, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589725

RESUMO

The Roma Diaspora-traditionally known as Gypsies-remains among the least explored population migratory events in historical times. It involved the migration of Roma ancestors out-of-India through the plateaus of Western Asia ultimately reaching Europe. The demographic effects of the Diaspora-bottlenecks, endogamy, and gene flow-might have left marked molecular traces in the Roma genomes. Here, we analyze the whole-genome sequence of 46 Roma individuals pertaining to four migrant groups in six European countries. Our analyses revealed a strong, early founder effect followed by a drastic reduction of ∼44% in effective population size. The Roma common ancestors split from the Punjabi population, from Northwest India, some generations before the Diaspora started, <2,000 years ago. The initial bottleneck and subsequent endogamy are revealed by the occurrence of extensive runs of homozygosity and identity-by-descent segments in all Roma populations. Furthermore, we provide evidence of gene flow from Armenian and Anatolian groups in present-day Roma, although the primary contribution to Roma gene pool comes from non-Roma Europeans, which accounts for >50% of their genomes. The linguistic and historical differentiation of Roma in migrant groups is confirmed by the differential proportion, but not a differential source, of European admixture in the Roma groups, which shows a westward cline. In the present study, we found that despite the strong admixture Roma had in their diaspora, the signature of the initial bottleneck and the subsequent endogamy is still present in Roma genomes.


Assuntos
Genoma Humano , Roma (Grupo Étnico)/genética , Europa (Continente) , Fluxo Gênico , Humanos , Filogeografia , Densidade Demográfica
8.
Hum Genet ; 139(8): 1091-1105, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32266522

RESUMO

Unlike other European countries, the human population genetics and demographic history of Metropolitan France is surprisingly understudied. In this work, we combined newly genotyped samples from various zones in France with publicly available data and applied both allele frequency and haplotype-based methods to describe the internal structure of this country, using genome-wide single nucleotide polymorphism (SNP) array genotypes. We found out that French Basques, already known for their linguistic uniqueness, are genetically distinct from all other groups and that the populations from southwest France (namely the Gascony region) share a large proportion of their ancestry with Basques. Otherwise, the genetic makeup of the French population is relatively homogeneous and mostly related to Southern and Central European groups. However, a fine-grained, haplotype-based analysis revealed that Bretons slightly separated from the rest of the groups, due mostly to gene flow from the British Isles in a time frame that coincides both historically attested Celtic population movements to this area between the 3th and the ninth centuries CE, but also with a more ancient genetic continuity between Brittany and the British Isles related to the shared drift with hunter-gatherer populations. Haplotype-based methods also unveiled subtle internal structures and connections with the surrounding modern populations, particularly in the periphery of the country.


Assuntos
Fluxo Gênico , Frequência do Gene , Variação Genética/genética , Genética Populacional , Genoma/genética , Haplótipos , Europa (Continente) , França , Estruturas Genéticas , Genômica , Genótipo , Geografia , Humanos
9.
Am J Phys Anthropol ; 166(1): 219-227, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327450

RESUMO

OBJECTIVES: War atrocities committed by the Spanish army in the Low Countries during the 16th century are so ingrained in the collective memory of Belgian and Dutch societies that they generally assume a signature of this history to be present in their genetic ancestry. Historians claim this assumption is a consequence of the so-called "Black Legend" and negative propaganda portraying and remembering Spanish soldiers as extreme sexual aggressors. The impact of the presence of Spaniards during the Dutch Revolt on the genetic variation in the Low Countries has been verified in this study. MATERIALS AND METHODS: A recent population genetic analysis of Iberian-associated Y-chromosomal variation among Europe is enlarged with representative samples of Dutch (N = 250) and Flemish (N = 1,087) males. Frequencies of these variants are also compared between donors whose oldest reported paternal ancestors lived in-nowadays Flemish-cities affected by so-called Spanish Furies (N = 116) versus other patrilineages in current Flemish territory (N = 971). RESULTS: The frequencies of Y-chromosomal markers Z195 and SRY2627 decline steeply going north from Spain and the data for the Flemish and Dutch populations fits within this pattern. No trend of higher frequencies of these variants has been found within the well-ascertained samples associated with Spanish Fury cities. DISCUSSION: Although sexual aggression did occur in the 16th century, these activities did not leave a traceable "Spanish" genetic signature in the autochthonous genome of the Low Countries. Our results support the view that the 'Black Legend' and historical propaganda on sexual aggression have nurtured today's incorrect assumptions regarding genetic ancestry.


Assuntos
Cromossomos Humanos Y/genética , Frequência do Gene/genética , Crimes de Guerra/história , Genética Populacional , História do Século XVI , Humanos , Masculino , Países Baixos , Polimorfismo de Nucleotídeo Único/genética , Espanha
10.
Ann Hum Biol ; 45(1): 98-104, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29382280

RESUMO

BACKGROUND: The genetic composition of human North African populations is an amalgam of different ancestral components coming from the Middle East, Europe, south-Saharan Africa and autochthonous to North Africa. This complex genetic pattern is the result of migrations and admixtures in the region since Palaeolithic times. AIMS: The objective of the present study is to refine knowledge of the population history of North African populations through the analysis of complete mitochondrial sequences. SUBJECTS AND METHODS: This study has sequenced complete mitochondrial DNAs (mtDNAs) in several North African and neighbouring individuals. RESULTS: The mtDNA haplogroup classification and phylogeny shows a high genetic diversity in the region as a result of continuous admixture. The phylogenetic analysis allowed us to identify a new haplogroup characterised by positions 10 101 C and 146 C (H1v2), a sub-branch of H1v, which is restricted to North Africa and whose origins are estimated as ∼4000 years ago. CONCLUSIONS: The analysis of the complete mtDNA genome has allowed for the identification of a North African sub-lineage that might be ignored by the analysis of partial mtDNA control region sequences, highlighting the phylogeographic relevance of mtDNA complete sequence analysis.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Haplótipos , Filogenia , África do Norte , Humanos , Filogeografia , Sequenciamento Completo do Genoma
11.
Mol Biol Evol ; 33(3): 738-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26582562

RESUMO

Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients.


Assuntos
Adaptação Biológica , Evolução Molecular , Homeostase , Fígado/metabolismo , Locos de Características Quantitativas , Oligoelementos/metabolismo , Adulto , Alelos , Evolução Biológica , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Estudos de Associação Genética , Variação Genética , Genótipo , Humanos , Masculino , Metais/metabolismo , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteoma , Proteômica , Seleção Genética , Transcriptoma
12.
Hum Mol Genet ; 24(7): 2023-34, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25504046

RESUMO

Parkinson's disease (PD) can be divided into familial (Mendelian) and sporadic forms. A number of causal genes have been discovered for the Mendelian form, which constitutes 10-20% of the total cases. Genome-wide association studies have successfully uncovered a number of susceptibility loci for sporadic cases but those only explain a small fraction (6-7%) of PD heritability. It has been observed that some genes that confer susceptibility to PD through common risk variants also contain rare causing mutations for the Mendelian forms of the disease. These results suggest a possible functional link between Mendelian and sporadic PD and led us to investigate the role that rare and low-frequency variants could have on the sporadic form. Through a targeting approach, we have resequenced at 49× coverage the exons and regulatory regions of 38 genes (including Mendelian and susceptibility PD genes) in 249 sporadic PD patients and 145 unrelated controls of European origin. Unlike susceptibility genes, Mendelian genes show a clear general enrichment of rare functional variants in PD cases, observed directly as well as with Tajima's D statistic and several collapsing methods. Our findings suggest that rare variation on PD Mendelian genes may have a role in the sporadic forms of the disease.


Assuntos
Doença de Parkinson/genética , Adulto , Idoso , Estudos de Casos e Controles , Éxons , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética
13.
Hum Genet ; 136(5): 559-573, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27817057

RESUMO

The Y chromosome is currently by far the most popular marker in genetic genealogy that combines genetic data and family history. This popularity is based on its haploid character and its close association with the patrilineage and paternal inherited surname. Other markers have not been found (yet) to overrule this status due to the low sensitivity and precision of autosomal DNA for genetic genealogical applications, given the vagaries of recombination, and the lower capacities of mitochondrial DNA combined with an in general much lower interest in maternal lineages. The current knowledge about the Y chromosome and the availability of markers with divergent mutation rates make it possible to answer questions on relatedness levels which differ in time depth; from the individual and familial level to the surnames, clan and population level. The use of the Y chromosome in genetic genealogy has led to applications in several well-established research disciplines; namely in, e.g., family history, demography, anthropology, forensic sciences, population genetics and sex chromosome evolution. The information obtained from analysing this chromosome is not only interesting for academic scientists but also for the huge and lively community of amateur genealogists and citizen-scientists, fascinated in analysing their own genealogy or surname. This popularity, however, has also some drawbacks, mainly for privacy reasons related to the DNA donor, his close family and far-related namesakes. In this review paper we argue why Y-chromosomal analysis and its genetic genealogical applications will still perform an important role in future interdisciplinary research.


Assuntos
Cromossomos Humanos Y/genética , Genealogia e Heráldica , Marcadores Genéticos , Antropologia , DNA Mitocondrial , Demografia , Evolução Molecular , Genética Populacional , Humanos , Masculino , Nomes , Linhagem
14.
Hum Genet ; 136(5): 499-510, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28444560

RESUMO

We present 42 new Y-chromosomal sequences from diverse Indian tribal and non-tribal populations, including the Jarawa and Onge from the Andaman Islands, which are analysed within a calibrated Y-chromosomal phylogeny incorporating South Asian (in total 305 individuals) and worldwide (in total 1286 individuals) data from the 1000 Genomes Project. In contrast to the more ancient ancestry in the South than in the North that has been claimed, we detected very similar coalescence times within Northern and Southern non-tribal Indian populations. A closest neighbour analysis in the phylogeny showed that Indian populations have an affinity towards Southern European populations and that the time of divergence from these populations substantially predated the Indo-European migration into India, probably reflecting ancient shared ancestry rather than the Indo-European migration, which had little effect on Indian male lineages. Among the tribal populations, the Birhor (Austro-Asiatic-speaking) and Irula (Dravidian-speaking) are the nearest neighbours of South Asian non-tribal populations, with a common origin in the last few millennia. In contrast, the Riang (Tibeto-Burman-speaking) and Andamanese have their nearest neighbour lineages in East Asia. The Jarawa and Onge shared haplogroup D lineages with each other within the last ~7000 years, but had diverged from Japanese haplogroup D Y-chromosomes ~53000 years ago, most likely by a split from a shared ancestral population. This analysis suggests that Indian populations have complex ancestry which cannot be explained by a single expansion model.


Assuntos
Cromossomos Humanos Y/genética , Genética Populacional , Análise de Sequência de DNA , População Branca/genética , Bases de Dados Genéticas , Genoma Humano , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Filogenia , Polimorfismo de Nucleotídeo Único
15.
Electrophoresis ; 37(21): 2841-2847, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27489250

RESUMO

Next-generation sequencing technologies have opened new opportunities in forensic genetics. Here, we assess the applicability and performance of the MiSeq FGx™ & ForenSeq™ DNA Signature Prep Kit (Illumina) for the identification of individuals from the mass graves of the Spanish Civil War (1936-1939). The main limitations for individual identification are the low number of possible first-degree living relatives and the high levels of DNA degradation reported in previous studies. Massively parallel sequencing technologies enabling the analysis of hundreds of regions and prioritizing short length amplicons constitute a promising tool for this kind of approaches. In this study, we first explore the power of this new technology to detect first- and second-degree kinship given different scenarios of DNA degradation. Second, we specifically assess its performance in a set of low DNA input samples previously analyzed with CE technologies. We conclude that this methodology will allow identification of up to second-degree relatives, even in situations with low sequencing performance and important levels of allele drop-out; it is thus a technology that resolves previous drawbacks and that will allow a successful approximation to the identification of remains.


Assuntos
Conflitos Armados/história , Sepultamento/história , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , DNA/análise , DNA/química , DNA/genética , Genética Forense/métodos , História do Século XX , Humanos , Funções Verossimilhança , Masculino , Espanha
16.
BMC Bioinformatics ; 15: 90, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24678591

RESUMO

BACKGROUND: Metagenomics is the genomic study of uncultured environmental samples, which has been greatly facilitated by the advent of shotgun-sequencing technologies. One of the main focuses of metagenomics is the discovery of previously uncultured microorganisms, which makes the assignment of sequences to a particular taxon a challenge and a crucial step. Recently, several methods have been developed to perform this task, based on different methodologies such as sequence composition or sequence similarity. The sequence composition methods have the ability to completely assign the whole dataset. However, their use in metagenomics and the study of their performance with real data is limited. In this work, we assess the consistency of three different methods (BLAST + Lowest Common Ancestor, Phymm, and Naïve Bayesian Classifier) in assigning real and simulated sequence reads. RESULTS: Both in real and in simulated data, BLAST + Lowest Common Ancestor (BLAST + LCA), Phymm, and Naïve Bayesian Classifier consistently assign a larger number of reads in higher taxonomic levels than in lower levels. However, discrepancies increase at lower taxonomic levels. In simulated data, consistent assignments between all three methods showed greater precision than assignments based on Phymm or Bayesian Classifier alone, since the BLAST + LCA algorithm performed best. In addition, assignment consistency in real data increased with sequence read length, in agreement with previously published simulation results. CONCLUSIONS: The use and combination of different approaches is advisable to assign metagenomic reads. Although the sensitivity could be reduced, the reliability can be increased by using the reads consistently assigned to the same taxa by, at least, two methods, and by training the programs using all available information.


Assuntos
Metagenômica/métodos , Algoritmos , Animais , Teorema de Bayes , Genoma , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Pele/metabolismo
17.
Sci Rep ; 14(1): 9979, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693301

RESUMO

The strategic location of North Africa has led to cultural and demographic shifts, shaping its genetic structure. Historical migrations brought different genetic components that are evident in present-day North African genomes, along with autochthonous components. The Imazighen (plural of Amazigh) are believed to be the descendants of autochthonous North Africans and speak various Amazigh languages, which belong to the Afro-Asiatic language family. However, the arrival of different human groups, especially during the Arab conquest, caused cultural and linguistic changes in local populations, increasing their heterogeneity. We aim to characterize the genetic structure of the region, using the largest Amazigh dataset to date and other reference samples. Our findings indicate microgeographical genetic heterogeneity among Amazigh populations, modeled by various admixture waves and different effective population sizes. A first admixture wave is detected group-wide around the twelfth century, whereas a second wave appears in some Amazigh groups around the nineteenth century. These events involved populations with higher genetic ancestry from south of the Sahara compared to the current North Africans. A plausible explanation would be the historical trans-Saharan slave trade, which lasted from the Roman times to the nineteenth century. Furthermore, our investigation shows that assortative mating in North Africa has been rare.


Assuntos
População Negra , Genética Populacional , Humanos , África do Norte , População Negra/genética , Heterogeneidade Genética , Genoma Humano , Migração Humana , Genômica/métodos , População do Norte da África
18.
Mol Biol Evol ; 29(1): 25-30, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21890475

RESUMO

The information left by recombination in our genomes can be used to make inferences on our recent evolutionary history. Specifically, the number of past recombination events in a population sample is a function of its effective population size (Ne). We have applied a method, Identifying Recombination in Sequences (IRiS), to detect specific past recombination events in 30 Old World populations to infer their Ne. We have found that sub-Saharan African populations have an Ne that is approximately four times greater than those of non-African populations and that outside of Africa, South Asian populations had the largest Ne. We also observe that the patterns of recombinational diversity of these populations correlate with distance out of Africa if that distance is measured along a path crossing South Arabia. No such correlation is found through a Sinai route, suggesting that anatomically modern humans first left Africa through the Bab-el-Mandeb strait rather than through present Egypt.


Assuntos
Evolução Molecular , Densidade Demográfica , Grupos Raciais/genética , Grupos Raciais/história , Recombinação Genética , África , Ásia , Bases de Dados Genéticas , Europa (Continente) , História Antiga , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Estatísticas não Paramétricas
19.
Sci Rep ; 13(1): 10395, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369751

RESUMO

Despite being enclosed between the Mediterranean Sea and the Sahara Desert, North Africa has been the scenario of multiple human migrations that have shaped the genetic structure of its present-day populations. Despite its richness, North Africa remains underrepresented in genomic studies. To overcome this, we have sequenced and analyzed 264 mitogenomes from the Algerian Chaoui-speaking Imazighen (a.k.a. Berbers) living in the Aurès region. The maternal genetic composition of the Aurès is similar to Arab populations in the region, dominated by West Eurasian lineages with a moderate presence of M1/U6 North African and L sub-Saharan lineages. When focusing on the time and geographic origin of the North African specific clades within the non-autochthonous haplogroups, different geographical neighboring regions contributed to the North African maternal gene pool during time periods that could be attributed to previously suggested admixture events in the region, since Paleolithic times to recent historical movements such as the Arabization. We have also observed the role of North Africa as a source of geneflow mainly in Southern European regions since Neolithic times. Finally, the present work constitutes an effort to increase the representation of North African populations in genetic databases, which is key to understand their history.


Assuntos
Genética Populacional , Genoma Mitocondrial , Humanos , DNA Mitocondrial/genética , África , África do Norte , Haplótipos/genética
20.
Forensic Sci Int Genet ; 66: 102906, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364481

RESUMO

The use of mitochondrial DNA (mtDNA) in the field of forensic genetics is widely spread mainly due to its advantages when identifying highly degraded samples. In this sense, massive parallel sequencing has made the analysis of the whole mitogenome more accessible, noticeably increasing the informativeness of mtDNA haplotypes. The civil war (1980-1992) in El Salvador caused many deaths and disappearances (including children) all across the country and the economic and social instability after the war forced many people to emigration. For this reason, different organizations have collected DNA samples from relatives with the aim of identifying missing people. Thus, we present a dataset containing 334 complete mitogenomes from the Salvadoran general population. To the best of our knowledge, this is the first publication of a nationwide forensic-quality complete mitogenome database of any Latin American country. We found 293 different haplotypes, with a random match probability of 0.0041 and 26.6 mean pairwise differences, which is similar to other Latin American populations, and which represent a marked improvement from the values obtained with just control region sequences. These haplotypes belong to 54 different haplogroups, being 91% of them of Native American origin. Over a third (35.9%) of the individuals carried at least a heteroplasmic site (excluding length heteroplasmies). Ultimately, the present database aims to represent mtDNA haplotype diversity in the general Salvadoran populations as a basis for the identification of people that disappeared during or after the civil war.


Assuntos
Genética Populacional , Genoma Mitocondrial , Criança , Humanos , El Salvador , DNA Mitocondrial/genética , Etnicidade/genética , Análise de Sequência de DNA , Haplótipos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA