Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 38(1): 123-132, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226903

RESUMO

BACKGROUND: Writer's cramp (WC) dystonia is a rare disease that causes abnormal postures during the writing task. Successful research studies for WC and other forms of dystonia are contingent on identifying sensitive and specific measures that relate to the clinical syndrome and achieve a realistic sample size to power research studies for a rare disease. Although prior studies have used writing kinematics, their diagnostic performance remains unclear. OBJECTIVE: This study aimed to evaluate the diagnostic performance of automated measures that distinguish subjects with WC from healthy volunteers. METHODS: A total of 21 subjects with WC and 22 healthy volunteers performed a sentence-copying assessment on a digital tablet using kinematic and hand recognition softwares. The sensitivity and specificity of automated measures were calculated using a logistic regression model. Power analysis was performed for two clinical research designs using these measures. The test and retest reliability of select automated measures was compared across repeat sentence-copying assessments. Lastly, a correlational analysis with subject- and clinician-rated outcomes was performed to understand the clinical meaning of automated measures. RESULTS: Of the 23 measures analyzed, the measures of word legibility and peak accelerations distinguished subjects with WC from healthy volunteers with high sensitivity and specificity and demonstrated smaller sample sizes suitable for rare disease studies, and the kinematic measures showed high reliability across repeat visits, while both word legibility and peak accelerations measures showed significant correlations with the subject- and clinician-rated outcomes. CONCLUSIONS: Novel automated measures that capture key aspects of the disease and are suitable for use in clinical research studies of WC dystonia were identified. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Humanos , Distúrbios Distônicos/diagnóstico , Doenças Raras , Reprodutibilidade dos Testes , Ensaios Clínicos como Assunto
2.
PLoS Comput Biol ; 18(6): e1010226, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666719

RESUMO

GABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development.


Assuntos
Interneurônios , Neurônios , Corpo Estriado , Interneurônios/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia
3.
Neurobiol Dis ; 158: 105464, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358617

RESUMO

TorsinA is a AAA+ ATPase that shuttles between the ER lumen and outer nuclear envelope in an ATP-dependent manner and is functionally implicated in nucleocytoplasmic transport. We hypothesized that the DYT-TOR1A dystonia disease-causing variant, ΔE TorsinA, may therefore disrupt the normal subcellular distribution of proteins between the nuclear and cytosolic compartments. To test this hypothesis, we performed proteomic analysis on nuclear and cytosolic subcellular fractions from DYT-TOR1A and wildtype mouse embryonic fibroblasts (MEFs). We further examined the compartmental proteomes following exposure to thapsigargin (Tg), an endoplasmic reticulum (ER) stressor, because DYT-TOR1A dystonia models have previously shown abnormalities in cellular stress responses. Across both subcellular compartments, proteomes of DYT-TOR1A cells showed basal state disruptions consistent with an activated stress response, and in response to thapsigargin, a blunted stress response. However, the DYT-TOR1A nuclear proteome under Tg cell stress showed the most pronounced and disproportionate degree of protein disruptions - 3-fold greater than all other conditions. The affected proteins extended beyond those typically associated with stress responses, including enrichments for processes critical for neuronal synaptic function. These findings highlight the advantage of subcellular proteomics to reveal events that localize to discrete subcellular compartments and refine thinking about the mechanisms and significance of cell stress in DYT-TOR1A pathogenesis.


Assuntos
Núcleo Celular/patologia , Distonia/genética , Distonia/patologia , Chaperonas Moleculares/genética , Proteômica , Estresse Fisiológico , Animais , Citosol/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Frações Subcelulares , Tapsigargina/farmacologia
4.
Neurobiol Dis ; 93: 137-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27168150

RESUMO

Rare de novo mutations in genes associated with inherited Mendelian disorders are potential contributors to sporadic disease. DYT1 dystonia is an autosomal dominant, early-onset, generalized dystonia associated with an in-frame, trinucleotide deletion (n. delGAG, p. ΔE 302/303) in the Tor1a gene. Here we examine the significance of a rare missense variant in the Tor1a gene (c. 613T>A, p. F205I), previously identified in a patient with sporadic late-onset focal dystonia, by modeling it in mice. Homozygous F205I mice have motor impairment, reduced steady-state levels of TorsinA, altered corticostriatal synaptic plasticity, and prominent brain imaging abnormalities in areas associated with motor function. Thus, the F205I variant causes abnormalities in domains affected in people and/or mouse models with the DYT1 Tor1a mutation (ΔE). Our findings establish the pathological significance of the F205I Tor1a variant and provide a model with both etiological and phenotypic relevance to further investigate dystonia mechanisms.


Assuntos
Distúrbios Distônicos/genética , Chaperonas Moleculares/genética , Mutação/genética , Plasticidade Neuronal/genética , Animais , Modelos Animais de Doenças , Distonia/genética , Camundongos Transgênicos
5.
J Neurosci ; 34(13): 4519-27, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24671997

RESUMO

The methyl-DNA binding protein MeCP2 is emerging as an important regulator of drug reinforcement processes. Psychostimulants induce phosphorylation of MeCP2 at Ser421; however, the functional significance of this posttranslational modification for addictive-like behaviors was unknown. Here we show that MeCP2 Ser421Ala knock-in mice display both a reduced threshold for the induction of locomotor sensitization by investigator-administered amphetamine and enhanced behavioral sensitivity to the reinforcing properties of self-administered cocaine. These behavioral differences were accompanied in the knock-in mice by changes in medium spiny neuron intrinsic excitability and nucleus accumbens gene expression typically observed in association with repeated exposure to these drugs. These data show that phosphorylation of MeCP2 at Ser421 functions to limit the circuit plasticities in the nucleus accumbens that underlie addictive-like behaviors.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Anfetamina/farmacologia , Animais , Cocaína/administração & dosagem , Corpo Estriado/citologia , Inibidores da Captação de Dopamina/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Técnicas In Vitro , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Fosforilação/fisiologia , Autoadministração
7.
Mov Disord ; 30(5): 624-31, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25777796

RESUMO

Elucidating the neuronal mechanisms underlying movement disorders is a major challenge because of the intricacy of the relevant neural circuits, which are characterized by diverse cell types and complex connectivity. A major limitation of traditional techniques, such as electrical stimulation or lesions, is that individual elements of a neural circuit cannot be selectively manipulated. Moreover, available treatments are largely based on trial and error rather than a detailed understanding of the circuit mechanisms. Gaps in our knowledge of the circuit mechanisms for movement disorders, as well as mechanisms underlying known treatments such as deep brain stimulation, make it difficult to design new and improved treatment options. In this perspective, we discuss how optogenetics, which allows researchers to use light to manipulate neuronal activity, can contribute to the understanding and treatment of movement disorders. We outline the advantages and limitations of optogenetics and discuss examples of studies that have used this tool to clarify the role of the basal ganglia circuitry in movement.


Assuntos
Encéfalo/metabolismo , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Optogenética/métodos , Encéfalo/patologia , Humanos
8.
Curr Opin Neurobiol ; 87: 102886, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901329

RESUMO

The integrated stress response (ISR) is a highly conserved biochemical pathway that regulates protein synthesis. The ISR is activated in response to diverse stressors to restore cellular homeostasis. As such, the ISR is implicated in a wide range of diseases, including brain disorders. However, in the brain, the ISR also has potent influence on processes beyond proteostasis, namely synaptic plasticity, learning and memory. Thus, in the setting of brain diseases, ISR activity may have dual effects on proteostasis and synaptic function. In this review, we consider the ISR's contribution to brain disorders through the lens of its potential effects on synaptic plasticity. From these examples, we illustrate that at times ISR activity may be a "double-edged sword". We also highlight its potential as a therapeutic target to improve circuit function in brain diseases independent of its role in disease pathogenesis.

9.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557486

RESUMO

The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Transdução de Sinais , Encéfalo , Neurotransmissores
10.
Biol Psychiatry ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38346480

RESUMO

BACKGROUND: Experience-dependent functional adaptation of nucleus accumbens (NAc) circuitry underlies the development and expression of reward-motivated behaviors. Parvalbumin-expressing GABAergic (gamma-aminobutyric acidergic) interneurons (PVINs) within the NAc are required for this process. Perineuronal nets (PNNs) are extracellular matrix structures enriched around PVINs that arise during development and have been proposed to mediate brain circuit stability. However, their function in the adult NAc is largely unknown. Here, we studied the developmental emergence and adult regulation of PNNs in the NAc of male and female mice and examined the cellular and behavioral consequences of reducing the PNN component brevican in NAc PVINs. METHODS: We characterized the expression of PNN components in mouse NAc using immunofluorescence and RNA in situ hybridization. We lowered brevican in NAc PVINs of adult mice using an intersectional viral and genetic method and quantified the effects on synaptic inputs to NAc PVINs and reward-motivated learning. RESULTS: PNNs around NAc PVINs were developmentally regulated and appeared during adolescence. In the adult NAc, PVIN PNNs were also dynamically regulated by cocaine. Transcription of the gene that encodes brevican was regulated in a cell type- and isoform-specific manner in the NAc, with the membrane-tethered form of brevican being highly enriched in PVINs. Lowering brevican in NAc PVINs of adult mice decreased their excitatory inputs and enhanced both short-term novel object recognition and cocaine-induced conditioned place preference. CONCLUSIONS: Regulation of brevican in NAc PVINs of adult mice modulates their excitatory synaptic drive and sets experience thresholds for the development of motivated behaviors driven by rewarding stimuli.

11.
Nature ; 448(7156): 894-900, 2007 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-17713528

RESUMO

Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, although the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3; also known as DLGAP3) is a postsynaptic scaffolding protein at excitatory synapses that is highly expressed in the striatum. Here we show that mice with genetic deletion of Sapap3 exhibit increased anxiety and compulsive grooming behaviour leading to facial hair loss and skin lesions; both behaviours are alleviated by a selective serotonin reuptake inhibitor. Electrophysiological, structural and biochemical studies of Sapap3-mutant mice reveal defects in cortico-striatal synapses. Furthermore, lentiviral-mediated selective expression of Sapap3 in the striatum rescues the synaptic and behavioural defects of Sapap3-mutant mice. These findings demonstrate a critical role for SAPAP3 at cortico-striatal synapses and emphasize the importance of cortico-striatal circuitry in OCD-like behaviours.


Assuntos
Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/fisiopatologia , Sinapses/metabolismo , Animais , Modelos Animais de Doenças , Face/patologia , Traumatismos Faciais/genética , Traumatismos Faciais/patologia , Regulação da Expressão Gênica , Asseio Animal , Camundongos , Mutação/genética , Neostriado/metabolismo , Neostriado/patologia , Neostriado/fisiopatologia , Proteínas do Tecido Nervoso/genética , Transtorno Obsessivo-Compulsivo/terapia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Autodestrutivo/genética , Comportamento Autodestrutivo/fisiopatologia , Sinapses/patologia , Transmissão Sináptica
12.
J Neurosci ; 31(33): 12053-7, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21849565

RESUMO

Long-lasting forms of synaptic plasticity involve modification of presynaptic strength in many brain regions. Although a presynaptic site for expression is well established, the detailed molecular mechanisms that lead to sustained changes in neurotransmitter release remain unclear. Here, we use acute in vivo genetic manipulation of synaptic proteins to investigate the molecular basis for presynaptic long-term potentiation (LTP) at hippocampal mossy fiber synapses. Munc13 proteins are active zone proteins that are essential for synaptic vesicle priming and neurotransmitter release. Munc13 proteins also interact with RIM1α, an active zone protein required for presynaptic long-term plasticity. By taking advantage of the observation that the RIM-binding domain of Munc13 is separable from the domain that is required for neurotransmitter release, we selectively tested whether Munc13-1 is an effector for RIM1α in presynaptic LTP. Our results provide the first evidence for the involvement of Munc13-1 in presynaptic long-term synaptic plasticity. We further demonstrate that the interaction between RIM1α and Munc13-1 is required for this plasticity. These results advance our understanding of the molecular mechanisms of presynaptic plasticity and suggest that modulation of vesicle priming may provide the cellular substrate for expression of LTP at mossy fiber synapses.


Assuntos
Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Terminações Pré-Sinápticas/metabolismo , Animais , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/fisiologia , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural/genética , Plasticidade Neuronal/genética , Técnicas de Cultura de Órgãos , Ligação Proteica/genética , Ratos
13.
J Neurosci ; 31(46): 16685-91, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22090495

RESUMO

Synaptic transmission mediated by AMPA-type glutamate receptors (AMPARs) is regulated by scaffold proteins in the postsynaptic density. SAP90/PSD-95-associated protein 3 (SAPAP3) is a scaffold protein that is highly expressed in striatal excitatory synapses. While loss of SAPAP3 is known to cause obsessive-compulsive disorder-like behaviors in mice and reduce extracellular field potentials in the striatum, the mechanism by which SAPAP3 regulates excitatory neurotransmission is largely unknown. This study demonstrates that Sapap3 deletion reduces AMPAR-mediated synaptic transmission in striatal medium spiny neurons (MSNs) through postsynaptic endocytosis of AMPARs. Striatal MSNs in Sapap3 KO mice have fewer synapses with AMPAR activity and a higher proportion of silent synapses. We further find that increased metabotropic glutamate receptor 5 (mGluR5) activity in Sapap3 KO mice underlies the decrease in AMPAR synaptic transmission and excessive synapse silencing. These findings suggest a model whereby the normal role of SAPAP3 is to inhibit mGluR5-driven endocytosis of AMPARs. The results of this study provide the first evidence for the mechanism by which the SAPAP family of scaffold proteins regulates AMPAR synaptic activity.


Assuntos
Proteínas do Tecido Nervoso/deficiência , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/genética , Transmissão Sináptica/genética , Animais , Animais Recém-Nascidos , Biofísica , Estimulação Elétrica , Endocitose/efeitos dos fármacos , Endocitose/genética , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor de Glutamato Metabotrópico 5 , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Estatísticas não Paramétricas , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
14.
J Neurosci ; 31(26): 9563-73, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21715621

RESUMO

Retrograde synaptic signaling by endocannabinoids (eCBs) is a widespread mechanism for activity-dependent inhibition of synaptic strength in the brain. Although prevalent, the conditions for eliciting eCB-mediated synaptic depression vary among brain circuits. As yet, relatively little is known about the molecular mechanisms underlying this variation, although the initial signaling events are likely dictated by postsynaptic proteins. SAP90/PSD-95-associated proteins (SAPAPs) are a family of postsynaptic proteins unique to excitatory synapses. Using Sapap3 knock-out (KO) mice, we find that, in the absence of SAPAP3, striatal medium spiny neuron (MSN) excitatory synapses exhibit eCB-mediated synaptic depression under conditions that do not normally activate this process. The anomalous synaptic plasticity requires type 5 metabotropic glutamate receptors (mGluR5s), which we find are dysregulated in Sapap3 KO MSNs. Both surface expression and activity of mGluR5s are increased in Sapap3 KO MSNs, suggesting that enhanced mGluR5 activity may drive the anomalous synaptic plasticity. In direct support of this possibility, we find that, in wild-type (WT) MSNs, pharmacological enhancement of mGluR5 by a positive allosteric modulator is sufficient to reproduce the increased synaptic depression seen in Sapap3 KO MSNs. The same pharmacologic treatment, however, fails to elicit further depression in KO MSNs. Under conditions that are sufficient to engage eCB-mediated synaptic depression in WT MSNs, Sapap3 deletion does not alter the magnitude of the response. These results identify a role for SAPAP3 in the regulation of postsynaptic mGluRs and eCB-mediated synaptic plasticity. SAPAPs, through their effect on mGluR activity, may serve as regulatory molecules gating the threshold for inducing eCB-mediated synaptic plasticity.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Análise de Variância , Animais , Corpo Estriado/fisiologia , Eletrofisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transmissão Sináptica/fisiologia
15.
J Neurosci ; 30(7): 2542-6, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20164339

RESUMO

While presynaptic, protein kinase A (PKA)-dependent, long-term plasticity has been described in numerous brain regions, the target(s) of PKA and the molecular mechanisms leading to sustained changes in neurotransmitter release remain elusive. Here, we acutely reconstitute mossy fiber long-term potentiation (mfLTP) de novo in the mature brains of mutant mice that normally lack this form of plasticity. These results demonstrate that RIM1alpha, a presynaptic scaffold protein and a potential PKA target, can support mfLTP independent of a role in brain development. Using this approach, we study two mutations of RIM1alpha (S413A and V415P) and conclude that PKA-phosphorylation-dependent signaling by RIM1alpha serine 413 is not required for mfLTP, consistent with conclusions reached from the study of RIM1alpha S413A knockin mice. Together, these results provide insights into the mechanism of mossy fiber LTP and demonstrate a useful acute approach to genetically manipulate mossy fiber synapses in the mature brain.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Potenciação de Longa Duração/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Serina/metabolismo , Proteínas 14-3-3/metabolismo , Alanina/genética , Animais , Animais Recém-Nascidos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estimulação Elétrica/métodos , Proteínas de Ligação ao GTP/deficiência , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Técnicas In Vitro , Potenciação de Longa Duração/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Fosforilação/genética , Ligação Proteica/genética , Ratos , Serina/genética , Estatísticas não Paramétricas , Transdução Genética/métodos
16.
J Med Genet ; 47(9): 646-50, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19955557

RESUMO

BACKGROUND: TOR1A encodes a chaperone-like AAA-ATPase whose Delta GAG (Delta E) mutation is responsible for an early onset, generalised dystonia syndrome. Because of the established role of the TOR1A gene in heritable generalised dystonia (DYT1), a potential genetic contribution of TOR1A to the more prevalent and diverse presentations of late onset, focal dystonia has been suggested. RESULTS: A novel TOR1A missense mutation (c.613T-->A, p.F205I) in a patient with late onset, focal dystonia is reported. The mutation occurs in a highly evolutionarily conserved region encoding the AAA-ATPase domain. Expression assays revealed that expression of F205I or Delta E, but not wildtype TOR1A, produced frequent intracellular inclusions. CONCLUSIONS: A novel, rare TOR1A variant has been identified in an individual with late onset, focal dystonia and evidence provided that the mutation impairs TOR1A function. Together these findings raise the possibility that this novel TOR1A variant may contribute to the expression of dystonia. In light of these findings, a more comprehensive genetic effort is warranted to identify the role of this and other rare TOR1A variants in the expression of late onset, focal dystonia.


Assuntos
Distúrbios Distônicos/epidemiologia , Distúrbios Distônicos/genética , Chaperonas Moleculares/genética , Mutação/genética , Idade de Início , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Linhagem Celular , Humanos , Corpos de Inclusão/metabolismo , Pessoa de Meia-Idade , Chaperonas Moleculares/química , Dados de Sequência Molecular
17.
BMJ Case Rep ; 14(3)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766969

RESUMO

We present the case of a 70-year-old woman with treatment-refractory diaphragmatic dystonia. Patient initially presented with blepharospasms followed by development of involuntary inspiratory spasms during speech. Her symptoms were drug-refractory, and she therefore underwent awake bilateral pallidal deep brain stimulation with microelectrode recording. No intraoperative or postoperative complications or adverse events occurred, and there were no undesired effects of stimulation. Using contacts in bilateral dorsal globus pallidus interna and ventral globus pallidus externa, symptoms alleviated after a latency period of 2-4 weeks. At 5-month follow-up, the patient maintained a 16.5-point reduction in Burke-Fahn-Marsden movement scale (from 20/120 to 3.5/120) with resolution of blepharospasm, irregular inspirations and broken and irregular speech.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Idoso , Distonia/terapia , Distúrbios Distônicos/terapia , Feminino , Globo Pálido , Humanos , Resultado do Tratamento
18.
Data Brief ; 39: 107609, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34901342

RESUMO

Here, we present quantitative subcellular compartment-specific proteomic data from wildtype and DYT-TOR1A heterozygous mouse embryonic fibroblasts (MEFs) basally and following thapsigargin (Tg) treatment [1]. In this experiment, we generated MEFs from wild type (WT) and a heterozygous DYT-TOR1A mouse model of dystonia. Subsequently, these MEF cultures were treated with either 1 µM Tg or dimethylsulfoxide vehicle (Veh) for six hours. Following treatment, the cells were fractionated into nuclear and cytosolic fractions. Liquid chromatography, tandem mass spectrometry (LC/MS/MS)-based proteomic profiling identified 65,056 unique peptides and 4801 unique proteins across all samples. The data presented here provide subcellular compartment-specific proteomic information within a dystonia model system both basally and under cellular stress. These data can inform future experiments focused on studying the function of TorsinA, the protein encoded by TOR1A, and its potential role in nucleocytoplasmic transport and proteostasis. In addition, the information in this article can also inform future mechanistic studies investigating the relationship between DYT-TOR1A dystonia and the cellular stress response to advance understanding of the pathogenesis of dystonia.

19.
Sci Transl Med ; 13(607)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408078

RESUMO

Dystonias are a group of chronic movement-disabling disorders for which highly effective oral medications or disease-modifying therapies are lacking. The most effective treatments require invasive procedures such as deep brain stimulation. In this study, we used a high-throughput assay based on a monogenic form of dystonia, DYT1 (DYT-TOR1A), to screen a library of compounds approved for use in humans, the NCATS Pharmaceutical Collection (NPC; 2816 compounds), and identify drugs able to correct mislocalization of the disease-causing protein variant, ∆E302/3 hTorsinA. The HIV protease inhibitor, ritonavir, was among 18 compounds found to normalize hTorsinA mislocalization. Using a DYT1 knock-in mouse model to test efficacy on brain pathologies, we found that ritonavir restored multiple brain abnormalities across development. Ritonavir acutely corrected striatal cholinergic interneuron physiology in the mature brain and yielded sustained correction of diffusion tensor magnetic resonance imaging signals when delivered during a discrete early developmental window. Mechanistically, we found that, across the family of HIV protease inhibitors, efficacy correlated with integrated stress response activation. These preclinical results identify ritonavir as a drug candidate for dystonia with disease-modifying potential.


Assuntos
Distonia , Inibidores da Protease de HIV , Animais , Encéfalo/diagnóstico por imagem , Distonia/tratamento farmacológico , Camundongos , Chaperonas Moleculares , Fenótipo , Ritonavir
20.
Science ; 372(6540)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888613

RESUMO

The integrated stress response (ISR) maintains proteostasis by modulating protein synthesis and is important in synaptic plasticity, learning, and memory. We developed a reporter, SPOTlight, for brainwide imaging of ISR state with cellular resolution. Unexpectedly, we found a class of neurons in mouse brain, striatal cholinergic interneurons (CINs), in which the ISR was activated at steady state. Genetic and pharmacological manipulations revealed that ISR signaling was necessary in CINs for normal type 2 dopamine receptor (D2R) modulation. Inhibiting the ISR inverted the sign of D2R modulation of CIN firing and evoked dopamine release and altered skill learning. Thus, a noncanonical, steady-state mode of ISR activation is found in CINs, revealing a neuromodulatory role for the ISR in learning.


Assuntos
Neurônios Colinérgicos/metabolismo , Dopamina/metabolismo , Interneurônios/fisiologia , Aprendizagem/fisiologia , Estresse Fisiológico , Potenciais de Ação , Animais , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora , Plasticidade Neuronal , Técnicas de Patch-Clamp , Biossíntese de Proteínas , Receptores de Dopamina D2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA