Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Cell Mol Life Sci ; 79(12): 592, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378343

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is crucial for fluid homeodynamics throughout the male reproductive tract. Previous evidence shed light on a potential molecular partnership between this channel and aquaporins (AQPs). Herein, we explore the role of CFTR on AQPs-mediated glycerol permeability in mouse Sertoli cells (mSCs). We were able to identify the expression of CFTR, AQP3, AQP7, and AQP9 in mSCs by RT-PCR, Western blot, and immunofluorescence techniques. Cells were then treated with CFTRinh-172, a specific CFTR inhibitor, and its glycerol permeability was evaluated by stopped-flow light scattering. We observed that CFTR inhibition decreased glycerol permeability in mSCs by 30.6% when compared to the control group. A DUOLINK proximity ligation assay was used to evaluate the endogenous protein-protein interactions between CFTR and the various aquaglyceroporins we identified. We positively detected that CFTR is in close proximity with AQP3, AQP7, and AQP9 and that, through a possible physical interaction, CFTR can modulate AQP-mediated glycerol permeability in mSCs. As glycerol is essential for the control of the blood-testis barrier and elevated concentration in testis results in the disruption of spermatogenesis, we suggest that the malfunction of CFTR and the consequent alteration in glycerol permeability is a potential link between male infertility and cystic fibrosis.


Assuntos
Aquaporinas , Glicerol , Animais , Masculino , Camundongos , Aquaporinas/genética , Aquaporinas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Glicerol/metabolismo , Permeabilidade , Células de Sertoli/metabolismo
2.
Adv Exp Med Biol ; 1398: 225-249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717498

RESUMO

Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.


Assuntos
Aquaporinas , Glândulas Exócrinas , Humanos , Aquaporinas/metabolismo , Aquaporinas/fisiologia , Glândulas Duodenais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Pâncreas/fisiologia , Glândulas Salivares/fisiologia , Glândulas Exócrinas/metabolismo , Glândulas Exócrinas/fisiologia
3.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35409378

RESUMO

The skin is the largest organ of the human body, serving as an effective mechanical barrier between the internal milieu and the external environment. The skin is widely considered the first-line defence of the body, with an essential function in rejecting pathogens and preventing mechanical, chemical, and physical damages. Keratinocytes are the predominant cells of the outer skin layer, the epidermis, which acts as a mechanical and water-permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. During this migration process, keratinocytes undertake a differentiation program known as keratinization process. Dysregulation of this differentiation process can result in a series of skin disorders. In this context, aquaporins (AQPs), a family of membrane channel proteins allowing the movement of water and small neutral solutes, are emerging as important players in skin physiology and skin diseases. Here, we review the role of AQPs in skin keratinization, hydration, keratinocytes proliferation, water retention, barrier repair, wound healing, and immune response activation. We also discuss the dysregulated involvement of AQPs in some common inflammatory dermatological diseases characterised by skin barrier disruption.


Assuntos
Aquaporinas , Dermatite , Aquaporina 3/metabolismo , Aquaporinas/metabolismo , Dermatite/metabolismo , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Pele/metabolismo , Água/metabolismo
4.
Plant J ; 102(4): 779-796, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31872463

RESUMO

Plasma membrane intrinsic proteins (PIPs) are known to be major facilitators of the movement of a number of substrates across cell membranes. From a drought-resistant cultivar of Oryza sativa (rice), we isolated an OsPIP1;3 gene single-nucleotide polymorphism (SNP) that is mostly expressed in rice roots and is strongly responsive to drought stress. Immunocytochemistry showed that OsPIP1;3 majorly accumulated on the proximal end of the endodermis and the cell surface around the xylem. Expression of GFP-OsPIP1;3 alone in Xenopus oocytes or rice protoplasts showed OsPIP1;3 mislocalization in the endoplasmic reticulum (ER)-like neighborhood, whereas co-expression of OsPIP2;2 recruited OsPIP1;3 to the plasma membrane and led to a significant enhancement of water permeability in oocytes. Moreover, reconstitution of 10×His-OsPIP1;3 in liposomes demonstrated water channel activity, as revealed by stopped-flow light scattering. Intriguingly, by patch-clamp technique, we detected significant NO3- conductance of OsPIP1;3 in mammalian cells. To investigate the physiological functions of OsPIP1;3, we ectopically expressed the OsPIP1;3 gene in Nicotiana benthamiana (tobacco). The transgenic tobacco plants exhibited higher photosynthesis rates, root hydraulic conductivity (Lpr ) and water-use efficiency, resulting in a greater biomass and a higher resistance to water deficit than the wild-type did. Further experiments suggested that heterologous expression of OsPIP1;3 in cyanobacterium altered bacterial growth under different conditions of CO2 gas supply. Overall, besides shedding light on the multiple functions played by OsPIP1;3, this work provides insights into the translational value of plant AQPs.


Assuntos
Expressão Ectópica do Gene , Oryza/genética , Transporte Biológico , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
5.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299321

RESUMO

The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of ß-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.


Assuntos
Testes Respiratórios/métodos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Biomarcadores/metabolismo , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática/metabolismo , Testes de Função Hepática , Neoplasias Hepáticas/metabolismo , Mitocôndrias/patologia , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/metabolismo
6.
J Biol Chem ; 294(18): 7377-7387, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30862673

RESUMO

The aquaglyceroporins are a subfamily of aquaporins that conduct both water and glycerol. Aquaporin-3 (AQP3) has an important physiological function in renal water reabsorption, and AQP3-mediated hydrogen peroxide (H2O2) permeability can enhance cytokine signaling in several cell types. The related aquaglyceroporin AQP7 is required for dendritic cell chemokine responses and antigen uptake. Selective small-molecule inhibitors are desirable tools for investigating the biological and pathological roles of these and other AQP isoforms. Here, using a calcein fluorescence quenching assay, we screened a library of 7360 drug-like small molecules for inhibition of mouse AQP3 water permeability. Hit confirmation and expansion with commercially available substances identified the ortho-chloride-containing compound DFP00173, which inhibited mouse and human AQP3 with an IC50 of ∼0.1-0.4 µm but had low efficacy toward mouse AQP7 and AQP9. Surprisingly, inhibitor specificity testing revealed that the methylurea-linked compound Z433927330, a partial AQP3 inhibitor (IC50, ∼0.7-0.9 µm), is a potent and efficacious inhibitor of mouse AQP7 water permeability (IC50, ∼0.2 µm). Stopped-flow light scattering measurements confirmed that DFP00173 and Z433927330 inhibit AQP3 glycerol permeability in human erythrocytes. Moreover, DFP00173, Z433927330, and the previously identified AQP9 inhibitor RF03176 blocked aquaglyceroporin H2O2 permeability. Molecular docking to AQP3, AQP7, and AQP9 homology models suggested interactions between these inhibitors and aquaglyceroporins at similar binding sites. DFP00173 and Z433927330 constitute selective and potent AQP3 and AQP7 inhibitors, respectively, and contribute to a set of isoform-specific aquaglyceroporin inhibitors that will facilitate the evaluation of these AQP isoforms as drug targets.


Assuntos
Aquaporina 3/antagonistas & inibidores , Aquaporinas/antagonistas & inibidores , Tiofenos/farmacologia , Animais , Células CHO , Permeabilidade da Membrana Celular , Cricetulus , Eritrócitos/metabolismo , Glicerol/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiofenos/química , Água/metabolismo
7.
Cell Physiol Biochem ; 54(3): 401-416, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32330379

RESUMO

BACKGROUND/AIMS: Oxidative stress and mitochondria dysfunction could be involved in the onset of non-alcoholic fatty liver disease (NAFLD) and in its progression to non-alcoholic steatohepatitis (NASH). Estrogens/phytoestrogens could counteract liver fat deposition with beneficial effects against NAFLD by unclear mechanisms. We aimed to analyze the protective effects elicited by genistein/estradiol in hepatocytes cultured in NAFLD-like medium on cell viability, triglycerides accumulation, mitochondrial function and oxidative stress and the role of NLRP3 inflammasome, toll like receptors 4 (TLR4), Akt and 5' AMP-activated protein kinase (AMPK)α1/2. METHODS: Human primary hepatocytes/hepatoma cell line (Huh7.5 cells) were incubated with a 2 mM mixture of oleate/palmitate in presence/absence of genistein/17ß-estradiol. In some experiments, Huh7.5 cells were exposed to various inhibitors of the above pathways and estrogenic receptors (ERs) and G protein-coupled estrogen receptor (GPER) blockers, before genistein/17ß-estradiol. Cell viability, mitochondrial membrane potential, reactive oxygen species and triglycerides content were examined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), 5,51,6,61-tetrachloro-1,11,3,31 tetraethylbenzimidazolyl carbocyanine iodide (JC-1), 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) and the Triglyceride Colorimetric Assay. The expression/activation of kinases was analyzed by means of Western blot. RESULTS: Genistein/17ß-estradiol protected hepatocytes against NAFLD-like medium, by preventing the loss of cell viability and mitochondrial function, triglycerides accumulation and peroxidation. The blocking of kinases, ERs and GPER was able to reduce the above effects, which were potentiated by NLRP3 inflammasome. CONCLUSION: Our findings suggest novel mechanisms underlying the protective effects elicited by phytoestrogens/estrogens against NAFLD/NASH and open novel therapeutic perspectives in the management of NAFLD in postmenopausal women.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Estradiol/farmacologia , Genisteína/farmacologia , Hepatócitos/efeitos dos fármacos , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular , Hepatócitos/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fitoestrógenos/farmacologia , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Triglicerídeos/metabolismo
8.
Ann Rheum Dis ; 79(7): 960-968, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32312770

RESUMO

BACKGROUND AND OBJECTIVE: Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease (AID) worldwide. The disease is caused by mutations in the MEFV gene encoding the inflammasome sensor Pyrin. Clinical diagnosis of FMF is complicated by overlap in symptoms with other diseases, and interpretation of genetic testing is confounded by the lack of a clear genotype-phenotype association for most of the 340 reported MEFV variants. In this study, the authors designed a functional assay and evaluated its potential in supporting FMF diagnosis. METHODS: Peripheral blood mononuclear cells (PBMCs) were obtained from patients with Pyrin-associated autoinflammation with an FMF phenotype (n=43) or with autoinflammatory features not compatible with FMF (n=8), 10 asymptomatic carriers and 48 healthy donors. Sera were obtained from patients with distinct AIDs (n=10), and whole blood from a subset of patients and controls. The clinical, demographic, molecular genetic factors and other characteristics of the patient population were assessed for their impact on the diagnostic test read-out. Interleukin (IL)-1ß and IL-18 levels were measured by Luminex assay. RESULTS: The ex vivo colchicine assay may be performed on whole blood or PBMC. The functional assay robustly segregated patients with FMF from healthy controls and patients with related clinical disorders. The diagnostic test distinguished patients with classical FMF mutations (M694V, M694I, M680I, R761H) from patients with other MEFV mutations and variants (K695R, P369S, R202Q, E148Q) that are considered benign or of uncertain clinical significance. CONCLUSION: The ex vivo colchicine assay may support diagnosis of FMF and functional subtyping of Pyrin-associated autoinflammation.


Assuntos
Febre Familiar do Mediterrâneo/diagnóstico , Imunofenotipagem/métodos , Pirina/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Colchicina/análise , Febre Familiar do Mediterrâneo/genética , Feminino , Estudos de Associação Genética , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Pirina/genética , Adulto Jovem
9.
Arch Biochem Biophys ; 679: 108222, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816311

RESUMO

Aquaporins (AQPs) are a family of transmembrane channel proteins responsible for the transport of water and small uncharged molecules. Thirteen distinct isoforms of AQPs have been identified in mammals (AQP0-12). Throughout the male reproductive tract, AQPs greatly enhance water transport across all biological barriers, providing a constant and expeditious movement of water and playing an active role in the regulation of water and ion homeostasis. This regulation of fluids is particularly important in the male reproductive tract, where proper fluid composition is directly linked with a healthy and competent spermatozoa production. For instance, in the testis, fluid regulation is essential for spermatogenesis and posterior spermatozoa transport into the epididymal ducts, while maintaining proper ionic conditions for their maturation and storage. Alterations in the expression pattern of AQPs or their dysfunction is linked with male subfertility/infertility. Thus, AQPs are important for male reproductive health. In this review, we will discuss the most recent data on the expression and function of the AQPs isoforms in the human, mouse and rat male reproductive tract. In addition, the regulation of AQPs expression and dysfunction linked with male infertility will be discussed.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica , Infertilidade/genética , Infertilidade/metabolismo , Animais , Humanos , Infertilidade/fisiopatologia , Masculino , Reprodução
10.
J Cell Sci ; 128(13): 2350-60, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977473

RESUMO

We previously described that high luminal Ca(2+) in the renal collecting duct attenuates short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through activation of the Ca(2+)-sensing receptor (CaSR). Here, we evaluated AQP2 phosphorylation and permeability, in both renal HEK-293 cells and in the dissected inner medullary collecting duct, in response to specific activation of CaSR with NPS-R568. In CaSR-transfected cells, CaSR activation drastically reduced the basal levels of AQP2 phosphorylation at S256 (AQP2-pS256), thus having an opposite effect to vasopressin action. When forskolin stimulation was performed in the presence of NPS-R568, the increase in AQP2-pS256 and in the osmotic water permeability were prevented. In the freshly isolated inner mouse medullar collecting duct, stimulation with forskolin in the presence of NPS-R568 prevented the increase in AQP2-pS256 and osmotic water permeability. Our data demonstrate that the activation of CaSR in the collecting duct prevents the cAMP-dependent increase in AQP2-pS256 and water permeability, counteracting the short-term vasopressin response. By extension, our results suggest the attractive concept that CaSR expressed in distinct nephron segments exerts a negative feedback on hormones acting through cAMP, conferring high sensitivity of hormone to extracellular Ca(2+).


Assuntos
Aquaporina 2/metabolismo , Cálcio/farmacologia , Espaço Extracelular/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vasopressinas/farmacologia , Adenilil Ciclases/metabolismo , Compostos de Anilina/farmacologia , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Camundongos , Osmose/efeitos dos fármacos , Fenetilaminas , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Propilaminas , Ratos , Espalhamento de Radiação , Água/metabolismo
11.
Mol Hum Reprod ; 23(11): 725-737, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961924

RESUMO

Over the past decades, there have been several studies suggesting that semen quality is declining. Interestingly, these observations are paired with a significant increase in the number of individuals diagnosed with metabolic diseases, including obesity and diabetes mellitus. Hence, it is tempting to hypothesize that obesity and its associated comorbidities and risk factors (such as a hypercaloric diets) impair the homeostasis of the male reproductive health, with a possible direct effect on the testes. The blood and interstitial fluids of obese individuals usually have increased levels of glycerol, notably due to triglyceride and phospholipid catabolism and high fructose intake. Glycerol is metabolized via intermediary metabolism by a group of reactions centred at the glycerol-3-phosphate shuttle, which links the metabolic pathway of glucose, lipids and oxidative phosphorylation, illustrating its high relevance for biological systems. Glycerol enters and exits the cells by the action of specialized carriers, known as aquaglyceroporins, whose functional importance for male reproductive health has emerged in the last few years. Notably, glycerol has antispermatogenic properties. When present in high concentration in the testis, it causes blood-testis barrier disruption, impairing tubular fluid homeostasis. Nevertheless, glycerol metabolism in testicular cells remains a matter of debate. Herein we discuss previous and current research concerning the role of glycerol and its metabolism in testicular cells, and how it can influence testicular activity.


Assuntos
Aquagliceroporinas/genética , Glicerol/metabolismo , Infertilidade Masculina/metabolismo , Obesidade/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Adulto , Aquagliceroporinas/metabolismo , Transporte Biológico , Regulação da Expressão Gênica , Glicerofosfatos/metabolismo , Glicólise/genética , Humanos , Infertilidade Masculina/complicações , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Metabolismo dos Lipídeos/genética , Masculino , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Fosforilação Oxidativa , Análise do Sêmen , Espermatogênese/genética , Espermatozoides/patologia , Testículo/patologia
12.
IUBMB Life ; 69(5): 341-346, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28322010

RESUMO

Hepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-ß-cyclodextrin (mßCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under such conditions, mtAQP8 mRNA and protein expressions were significantly reduced. In contrast, cholesterol depletion using mßCD alone increased SREBP-1 and 2 activation and upregulated HMGCR and mtAQP8 mRNA and protein expressions. The results suggest that cholesterol can regulate transcriptionally human hepatocyte mtAQP8 expression likely via SREBPs. The functional implications of our findings are discussed. © 2017 IUBMB Life, 69(5):341-346, 2017.


Assuntos
Aquaporinas/metabolismo , Colesterol/metabolismo , Hepatócitos/metabolismo , Aquaporinas/genética , Linhagem Celular , Colesterol/farmacocinética , Hepatócitos/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Mitocôndrias/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , beta-Ciclodextrinas/farmacocinética
13.
Ann Hepatol ; 16(Suppl. 1: s3-105.): s87-s105, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29080344

RESUMO

Bile acids (BAs) regulate the absorption of fat-soluble vitamins, cholesterol and lipids but have also a key role as singalling molecules and in the modulation of epithelial cell proliferation, gene expression and metabolism. These homeostatic pathways, when disrupted, are able to promote local inflammation, systemic metabolic disorders and, ultimately, cancer. The effect of hydrophobic BAs, in particular, can be linked with cancer in several digestive (mainly oesophagus, stomach, liver, pancreas, biliary tract, colon) and extra-digestive organs (i.e. prostate, breast) through a complex series of mechanisms including direct oxidative stress with DNA damage, apoptosis, epigenetic factors regulating gene expression, reduced/increased expression of nuclear receptors (mainly farnesoid X receptor, FXR) and altered composition of gut microbiota, also acting as a common interface between environmental factors (including diet, lifestyle, exposure to toxics) and the molecular events promoting cancerogenesis. Primary prevention strategies (i.e. changes in dietary habits and lifestyle, reduced exposure to environmental toxics) mainly able to modulate gut microbiota and the epigenome, and the therapeutic use of hydrophilic BAs to counterbalance the negative effects of the more hydrophobic BAs might be, in the near future, part of useful tools for cancer prevention and management.


Assuntos
Ácidos e Sais Biliares/metabolismo , Transformação Celular Neoplásica/metabolismo , Poluentes Ambientais/efeitos adversos , Estilo de Vida , Neoplasias/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Dieta/efeitos adversos , Metabolismo Energético , Exposição Ambiental/efeitos adversos , Epigênese Genética , Microbioma Gastrointestinal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/epidemiologia , Neoplasias/genética , Neoplasias/patologia , Estresse Oxidativo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Risco , Transdução de Sinais , Fumar/efeitos adversos , Fumar/epidemiologia
14.
Int J Mol Sci ; 18(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186031

RESUMO

Aquaglyceroporins-aquaporin membrane channels (AQP) that conduct glycerol and other small neutral solutes in addition to water-play major roles in obesity. In adipocytes, aquaglyceroporins mediate glycerol uptake and release across the plasma membrane, which are two key steps for triacylglycerols (TAGs) synthesis (lipogenesis) and hydrolysis (lipolysis). The aim of this study was to assess both glycerol permeability and metabolism in undifferentiated 3T3-L1 cells (UDCs) as well as in untreated (CTL-DCs) versus lipopolysaccharide (LPS-DCs)-treated differentiated 3T3-L1 adipocytes. Glycerol release, TAGs content and whole membrane glycerol permeability were significantly increased in DCs as compared to UDCs. Moreover, in DCs, LPS treatment significantly increased TAGs content and decreased glycerol permeability. In addition, a significant reduction in whole membrane glycerol permeability was observed in LPS-DCs as compared to CTL-DCs. The relative contributions of AQP3, AQP7 and AQP9 (facilitated diffusion), as well as that of the phospholipid bilayer (simple diffusion), to the whole membrane glycerol permeability, were estimated biophysically in UDCs, CTL-DCs and LPS-DCs, using selective AQP inhibitors. Further studies will be required to determine if modifications in either subcellular localization and/or activity of aquaglyceroporins could account for the data herein. Nevertheless, our findings provide novel insights in understanding the LPS-induced adipocyte hypertrophy that accompanies obesity.


Assuntos
Adipócitos/metabolismo , Glicerol/metabolismo , Lipopolissacarídeos/farmacologia , Células 3T3-L1 , Animais , Aquagliceroporinas/metabolismo , Transporte Biológico/efeitos dos fármacos , Camundongos , Triglicerídeos/metabolismo
15.
Int J Mol Sci ; 17(7)2016 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-27409609

RESUMO

Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field.


Assuntos
Aquaporinas/metabolismo , Hepatócitos/metabolismo , Células de Sertoli/metabolismo , Metabolismo Energético , Hepatócitos/citologia , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/citologia
16.
Histochem Cell Biol ; 142(4): 449-59, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24770665

RESUMO

Mucins are high molecular weight epithelial proteins, strongly glycosylated, and are the main component of the mucus. Since mucus secretion can be altered in diseases, colon mucins can be regarded as a biomarker of chronic inflammatory bowel diseases or preneoplastic changes. Conventional histochemistry and lectin histochemistry combined with chemical treatment and enzymatic digestion were carried out to analyze the colon mucins in mice fed a high-fat diet for 25 weeks, a period sufficient to induce simple liver steatosis, to check whether the carbohydrate features of mucus can be altered by an inadequate diet. An increase in the sialo/sulfomucins ratio with respect to control mice, assessed by computerized image analysis, was observed in the colon, although differences in sialic acid acetylation between control and mice fed a high-fat diet were not found. High-fat diet was also associated with altered lectin-binding pattern of the mucus, with a probable shortening of oligosaccharide chains of glycoproteins. This pattern was leading to over-expression of Galß1,3GalNAc terminal dimers (TF antigen) and GalNAc terminal residues (Tn antigen). This altered composition of mucins can be related to a defect in the process of glycosylation, or to incomplete maturation of goblet cells, and may be an early indication of preneoplastic and neoplastic changes. In conclusion, our findings confirm that a fatty-rich diet (Western-style diet) induces alteration of mucins and may be associated with colon diseases. Our investigation corroborates the usefulness of lectins histochemistry in the early diagnosis of prepathological states of the colon.


Assuntos
Colo/química , Dieta Hiperlipídica/efeitos adversos , Mucinas/química , Oligossacarídeos/análise , Oligossacarídeos/química , Animais , Colo/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Hepatology ; 57(5): 2061-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23299935

RESUMO

UNLABELLED: Hepatocyte mitochondrial ammonia detoxification via ureagenesis is critical for the prevention of hyperammonemia and hepatic encephalopathy. Aquaporin-8 (AQP8) channels facilitate the membrane transport of ammonia. Because AQP8 is expressed in hepatocyte inner mitochondrial membranes (IMMs), we studied whether mitochondrial AQP8 (mtAQP8) plays a role in ureagenesis from ammonia. Primary cultured rat hepatocytes were transfected with small interfering RNAs (siRNAs) targeting two different regions of the rat AQP8 molecule or with scrambled control siRNA. After 48 hours, the levels of mtAQP8 protein decreased by approximately 80% (P < 0.05) without affecting cell viability. mtAQP8 knockdown cells in the presence of ammonium chloride showed a decrease in ureagenesis of approximately 30% (P < 0.05). Glucagon strongly stimulated ureagenesis in control hepatocytes (+120%, P < 0.05) but induced no significant stimulation in mtAQP8 knockdown cells. Contrarily, mtAQP8 silencing induced no significant change in basal and glucagon-induced ureagenesis when glutamine or alanine was used as a source of nitrogen. Nuclear magnetic resonance studies using 15N-labeled ammonia confirmed that glucagon-induced 15N-labeled urea synthesis was markedly reduced in mtAQP8 knockdown hepatocytes (-90%, P < 0.05). In vivo studies in rats showed that under glucagon-induced ureagenesis, hepatic mtAQP8 protein expression was markedly up-regulated (+160%, P < 0.05). Moreover, transport studies in liver IMM vesicles showed that glucagon increased the diffusional permeability to the ammonia analog [(14) C]methylamine (+80%, P < 0.05). CONCLUSION: Hepatocyte mtAQP8 channels facilitate the mitochondrial uptake of ammonia and its metabolism into urea, mainly under glucagon stimulation. This mechanism may be relevant to hepatic ammonia detoxification and in turn, avoid the deleterious effects of hyperammonemia.


Assuntos
Amônia/metabolismo , Aquaporinas/metabolismo , Hepatócitos/metabolismo , Inativação Metabólica/fisiologia , Mitocôndrias Hepáticas/metabolismo , Ureia/metabolismo , Animais , Aquaporinas/efeitos dos fármacos , Aquaporinas/genética , Células Cultivadas , Glucagon/farmacologia , Hepatócitos/patologia , Masculino , Membranas Mitocondriais/metabolismo , Modelos Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Ratos , Ratos Wistar , Transfecção , Regulação para Cima/efeitos dos fármacos
18.
Hepatology ; 57(1): 93-102, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22814966

RESUMO

UNLABELLED: Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and in vitro models of lipotoxicity, we show that outer mitochondrial membrane permeability is altered and identified a posttranslational modification of voltage-dependent anion channel (VDAC), a membrane channel and NADH oxidase, as a cause of early mitochondrial dysfunction. Thus, in nonalcoholic steatosis VDAC exhibits reduced threonine phosphorylation, which increases the influx of water and calcium into mitochondria, sensitizes the organelle to matrix swelling, depolarization, and cytochrome c release without inducing cell death. This also amplifies VDAC enzymatic and channel activities regulation by calcium and modifies its interaction with proteic partners. Moreover, lipid accumulation triggers a rapid lack of VDAC phosphorylation by glycogen synthase kinase 3 (GSK3). Pharmacological and genetic manipulations proved GSK3 to be responsible for VDAC phosphorylation in normal cells. Notably, VDAC phosphorylation level correlated with steatosis severity in patients. CONCLUSION: VDAC acts as an early sensor of lipid toxicity and its GSK3-mediated phosphorylation status controls outer mitochondrial membrane permeabilization in hepatosteatosis.


Assuntos
Fígado Gorduroso/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Membranas Mitocondriais/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Proteína bcl-X/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Feminino , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
19.
Biol Cell ; 105(3): 118-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23289515

RESUMO

BACKGROUND INFORMATION: Cyanobacteria possess Aquaporin-Z (AqpZ) membrane channels which have been suggested to mediate the water efflux underlying osmostress-inducible gene expression and to be essential for glucose metabolism under photomixotrophic growth. However, preliminary observations suggest that the biophy-sical properties of transport and physiological meaning of AqpZ in such photosynthetic microorganisms are not yet completely assessed. RESULTS: In this study, we used Xenopus laevis oocyte and proteoliposome systems to directly demonstrate the water permeability of the cyanobacterium Synechococcus sp. PCC7942 aquaporin, SsAqpZ. By an in vitro assay of intracellular acidification in yeast cells, SsAqpZ was found to transport also CO2 . Consistent with this result, during the entire exponential phase of growth, Synechococcus SsAqpZ-null-mutant cells grew slower than the corresponding wild-type cells. This phenotype was stronger with higher levels of extracellular CO2 . In line with the conversion of CO2 gas into HCO3(-) ions under alkaline conditions, the impairment in growth of the SsAqpZ-null strain was weaker in more alkaline culture medium. CONCLUSIONS: Cyanobacterial SsAqpZ may exert a pleiotropic function in addition to the already reported roles in macronutrient homeostasis and osmotic-stress response as it appears to constitute an important pathway in CO2 uptake, a fundamental step in photosynthesis.


Assuntos
Aquaporinas/metabolismo , Dióxido de Carbono/metabolismo , Permeabilidade da Membrana Celular , Synechococcus/citologia , Synechococcus/metabolismo , Água/metabolismo , Animais , Bioensaio , Lipossomos/metabolismo , Mutação/genética , Oócitos/metabolismo , Osmose , Saccharomyces cerevisiae/metabolismo , Synechococcus/efeitos dos fármacos , Synechococcus/crescimento & desenvolvimento , Xenopus laevis
20.
Int Immunopharmacol ; 137: 112450, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906007

RESUMO

Inflammation, apoptosis and oxidative stress play crucial roles in the deterioration of severe acute pancreatitis-associated acute respiratory distress syndrome (SAP-ARDS). Unfortunately, despite a high mortality rate of 45 %[1], there are limited treatment options available for ARDS outside of last resort options such as mechanical ventilation and extracorporeal support strategies[2]. This study investigated the potential therapeutic role and mechanisms of AQP9 inhibitor RG100204 in two animal models of severe acute pancreatitis, inducing acute respiratory distress syndrome: 1) a sodium-taurocholate induced rat model, and 2) and Cerulein and lipopolysaccharide induced mouse model. RG100204 treatment led to a profound reduction in inflammatory cytokine expression in pancreatic, and lung tissue, in both models. In addition, infiltration of CD68 + and CD11b + cells into these tissues were reduced in RG100204 treated SAP animals, and edema and SAP associated tissue damage were improved. Moreover, we demonstrate that RG100204 reduced apoptosis in the lungs of rat SAP animals, and reduces NF-κB signaling, NLRP3, expression, while profoundly increasing the Nrf2-dependent anti oxidative stress response. We conclude that AQP9 inhibition is a promising strategy for the treatment of pancreatitis and its systemic complications, such as ARDS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA