RESUMO
Climate change is increasing the frequency of droughts and the risk of severe wildfires, which can interact with shrub encroachment and browsing by wild ungulates. Wild ungulate populations are expanding due, among other factors, to favorable habitat changes resulting from land abandonment or land-use changes. Understanding how ungulate browsing interacts with drought to affect woody plant mortality, plant flammability, and fire hazard is especially relevant in the context of climate change and increasing frequency of wildfires. The aim of this study is to explore the combined effects of cumulative drought, shrub encroachment, and ungulate browsing on the fire hazard of Mediterranean oak woodlands in Portugal. In a long-term (18 years) ungulate fencing exclusion experiment that simulated land abandonment and management neglect, we investigated the population dynamics of the native shrub Cistus ladanifer, which naturally dominates the understory of woodlands and is browsed by ungulates, comparing areas with (no fencing) and without (fencing) wild ungulate browsing. We also modeled fire behavior in browsed and unbrowsed plots considering drought and nondrought scenarios. Specifically, we estimated C. ladanifer population density, biomass, and fuel load characteristics, which were used to model fire behavior in drought and nondrought scenarios. Overall, drought increased the proportion of dead C. ladanifer shrub individuals, which was higher in the browsed plots. Drought decreased the ratio of live to dead shrub plant material, increased total fuel loading, shrub stand flammability, and the modeled fire parameters, that is, rate of surface fire spread, fireline intensity, and flame length. However, total fuel load and fire hazard were lower in browsed than unbrowsed plots, both in drought and nondrought scenarios. Browsing also decreased the population density of living shrubs, halting shrub encroachment. Our study provides long-term experimental evidence showing the role of wild ungulates in mitigating drought effects on fire hazard in shrub-encroached Mediterranean oak woodlands. Our results also emphasize that the long-term effects of land abandonment can interact with climate change drivers, affecting wildfire hazard. This is particularly relevant given the increasing incidence of land abandonment.
Assuntos
Secas , Florestas , Quercus , Incêndios Florestais , Animais , Quercus/fisiologia , Portugal , Incêndios , Cervos/fisiologia , Cistaceae/fisiologia , Dinâmica Populacional , Mudança Climática , HerbivoriaRESUMO
Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.
Assuntos
Fabaceae/fisiologia , Pradaria , Internacionalidade , Nitrogênio/farmacologia , Fósforo/farmacologia , Biodiversidade , Biomassa , Fabaceae/efeitos dos fármacos , ProbabilidadeRESUMO
Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.
Assuntos
Pradaria , Herbivoria , Biodiversidade , Ecossistema , NutrientesRESUMO
The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.
Assuntos
Biodiversidade , Pradaria , Ecossistema , Herbivoria , NutrientesRESUMO
Interaction effects of different stressors, such as extreme drought and plant invasion, can have detrimental effects on ecosystem functioning and recovery after drought. With ongoing climate change and increasing plant invasion, there is an urgent need to predict the short- and long-term interaction impacts of these stressors on ecosystems. We established a combined precipitation exclusion and shrub invasion (Cistus ladanifer) experiment in a Mediterranean cork oak (Quercus suber) ecosystem with four treatments: (1) Q. suber control; (2) Q. suber with rain exclusion; (3) Q. suber invaded by shrubs; and (4) Q. suber with rain exclusion and shrub invasion. As key parameter, we continuously measured ecosystem water fluxes. In an average precipitation year, the interaction effects of both stressors were neutral. However, the combination of imposed drought and shrub invasion led to amplifying interaction effects during an extreme drought by strongly reducing tree transpiration. Contrarily, the imposed drought reduced the competitiveness of the shrubs in the following recovery period, which buffered the negative effects of shrub invasion on Q. suber. Our results demonstrate the highly dynamic and nonlinear effects of interacting stressors on ecosystems and urges for further investigations on biotic interactions in a context of climate change pressures.
Assuntos
Secas , Quercus , Ecossistema , Árvores , ÁguaRESUMO
Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.
Assuntos
Secas , Pradaria , Biodiversidade , Biomassa , Ecossistema , Europa (Continente)RESUMO
Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.
Assuntos
Nitrogênio , Solo , Animais , Ecossistema , Fertilização , Pradaria , Herbivoria , Humanos , Nitrogênio/análiseRESUMO
Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.
Assuntos
Ecossistema , Pradaria , Carbono , Nitrogênio/análise , Nutrientes , SoloRESUMO
The 'two-water-worlds' hypothesis is based on stable isotope differences in stream, soil and xylem waters in dual isotope space. It postulates no connectivity between bound and mobile soil waters, and preferential plant water uptake of bound soil water sources. We tested the pool-weighted impact of isotopically distinct water pools for hydrological cycling, the influence of species-specific water use and the degree of ecohydrological separation. We combined stable isotope analysis (δ18 O and δ2 H) of ecosystem water pools of precipitation, groundwater, soil and xylem water of two distinct species (Quercus suber, Cistus ladanifer) with observations of soil water contents and sap flow. Shallow soil water was evaporatively enriched during dry-down periods, but enrichment faded strongly with depth and upon precipitation events. Despite clearly distinct water sources and water-use strategies, both species displayed a highly opportunistic pattern of root water uptake. Here we offer an alternative explanation, showing that the isotopic differences between soil and plant water vs groundwater can be fully explained by spatio-temporal dynamics. Pool weighting the contribution of evaporatively enriched soil water reveals only minor annual impacts of these sources to ecosystem water cycling (c. 11% of bulk soil water and c. 14% of transpired water).
Assuntos
Modelos Biológicos , Água/metabolismo , Transporte Biológico , Cistus/metabolismo , Deutério/metabolismo , Ecossistema , Água Subterrânea/química , Isótopos de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Quercus/metabolismo , Chuva , Estações do Ano , Solo/química , Pressão de Vapor , Xilema/metabolismoRESUMO
Herbivory, plant facilitation, and competition have complex impacts on tree regeneration which are seldom investigated together. Grazing exclosure experiments have allowed quantification of the effects of large herbivores on tree regeneration dynamics but have often ignored the effect of herbivorous insects. We experimentally tested how folivory (percentage of leaf damaged by insects) and microenvironment (tree canopy cover and herbs) jointly alter performance (growth and survival) of seedlings of two dominant Mediterranean oak-species within ungulate exclosures in a 3-year field study. An agroforestry system dominated by cork oak (Quercus suber) and holm oak (Q. rotundifolia) was assessed in south-east Portugal. We aimed also to determine whether the two oak species differed in the interdependences between folivory, microenvironment, covaring factors, and seedling performance. Unexpectedly, under the low-moderate insect defoliation, growth and survival of cork and holm oak seedlings were positively associated with herbivore damage. Herb removal increased oak folivory by 1.4 times. Herb removal was also positively associated with growth, directly and indirectly through its negative effect on oak folivory. Tree canopy favored insect folivory upon cork oak seedlings directly and upon holm oak indirectly via decreasing light availability. Folivory was threefold greater upon cork than upon holm oak-seedlings. Our study shows that tree canopy, herbs, and covarying factors can affect cork and holm oak-seedling performances through complex pathways, which markedly differ for the two species. The combined effect of insect herbivory and positive and negative plant-plant interactions need to be integrated into future tree regeneration efforts toward tackling the regeneration crisis of oak agroforestry systems of the Mediterranean.
RESUMO
Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL : AX balance in response to climate conditions, but whether trees of different species acclimate in AL : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b Ë 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.
Assuntos
Folhas de Planta/anatomia & histologia , Árvores/crescimento & desenvolvimento , Madeira/anatomia & histologia , Europa (Continente) , Geografia , Modelos Estatísticos , Especificidade da Espécie , Árvores/anatomia & histologia , Xilema/anatomia & histologiaRESUMO
Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.
Assuntos
Biomassa , Pradaria , Mudança Climática , Estações do Ano , BiodiversidadeRESUMO
All multicellular organisms host a diverse microbiome composed of microbial pathogens, mutualists, and commensals, and changes in microbiome diversity or composition can alter host fitness and function. Nonetheless, we lack a general understanding of the drivers of microbiome diversity, in part because it is regulated by concurrent processes spanning scales from global to local. Global-scale environmental gradients can determine variation in microbiome diversity among sites, however an individual host's microbiome also may reflect its local micro-environment. We fill this knowledge gap by experimentally manipulating two potential mediators of plant microbiome diversity (soil nutrient supply and herbivore density) at 23 grassland sites spanning global-scale gradients in soil nutrients, climate, and plant biomass. Here we show that leaf-scale microbiome diversity in unmanipulated plots depended on the total microbiome diversity at each site, which was highest at sites with high soil nutrients and plant biomass. We also found that experimentally adding soil nutrients and excluding herbivores produced concordant results across sites, increasing microbiome diversity by increasing plant biomass, which created a shaded microclimate. This demonstration of consistent responses of microbiome diversity across a wide range of host species and environmental conditions suggests the possibility of a general, predictive understanding of microbiome diversity.
Assuntos
Herbivoria , Microbiota , Biomassa , Nutrientes , SoloRESUMO
Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.
Assuntos
Pradaria , Herbivoria , Animais , Banco de Sementes , Solo , Plantas , Nutrientes , Ecossistema , MamíferosRESUMO
Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change.
Assuntos
Biodiversidade , Pradaria , Biomassa , Eutrofização , Estações do Ano , EcossistemaRESUMO
Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.
Assuntos
Ecossistema , Solo , Carbono , Biodiversidade , Biomassa , Plantas , NitrogênioRESUMO
Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.
Assuntos
Ecossistema , Pradaria , Solo/química , Microbiologia do Solo , BiodiversidadeRESUMO
Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation. At sites with a short history of grazing, the effects of herbivore exclusion were not related to precipitation but differed for native and exotic plant richness. Thus, plant species' evolutionary history of grazing continues to shape the response of the world's grasslands to changing mammalian herbivory.
Assuntos
Biodiversidade , Herbivoria , Animais , Mamíferos , Plantas , SoloRESUMO
Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.
Assuntos
Biota , Ecossistema , Eutrofização , Pradaria , Biodiversidade , Biomassa , Fertilização , Modelos Biológicos , PlantasRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.