Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 594, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910245

RESUMO

BACKGROUND: Downy mildew is the most relevant disease of quinoa and the most widespread. Though, little is known about the genetics of resistance to this disease. The objective of this study was to identify the genomic regions controlling downy mildew resistance in quinoa and candidate genes for this trait. With this aim we carried out a GWAS analysis in a collection formed by 211 quinoa accessions from different origins. This approach was combined with inheritance studies and Bulk Segregant Analysis (BSA) in a segregating population. RESULTS: GWAS analysis identified 26 genomic regions associated with the trait. Inheritance studies in a F2 population segregating for resistance revealed the existence of a major single dominant gene controlling downy mildew complete resistance in quinoa accession PI614911. Through BSA, this gene was found to be located in chromosome 4, in a region also identified by GWAS. Furthermore, several plant receptors and resistance genes were found to be located into the genomic regions identified by GWAS and are postulated as candidate genes for resistance. CONCLUSIONS: Until now, little was known about the genetic control of downy mildew resistance in quinoa. A previous inheritance study suggested that resistance to this disease was a quantitative polygenic trait and previous GWAS analyses were unable to identify accurate markers for this disease. In our study we demonstrate the existence of, at least, one major gene conferring resistance to this disease, identify the genomic regions involved in the trait and provide plausible candidate genes involved in defense. Therefore, this study significantly increases our knowledge about the genetics of downy mildew resistance and provides relevant information for breeding for this important trait.


Assuntos
Chenopodium quinoa , Resistência à Doença , Genes de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Chenopodium quinoa/genética
2.
Front Plant Sci ; 13: 1056231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714707

RESUMO

Introduction: Sunflower breeding for resistance to the parasitic plant sunflower broomrape (Orobanche cumana Wallr.) requires the identification of novel resistance genes. In this research, we conducted a genome-wide association study (GWAS) to identify QTLs associated with broomrape resistance. Methods: The marker-trait associations were examined across a germplasm set composed of 104 sunflower accessions. They were genotyped with a 600k AXIOM® genome-wide array and evaluated for resistance to three populations of the parasite with varying levels of virulence (races EFR, FGV, and GTK) in two environments. Results and Discussion: The analysis of the genetic structure of the germplasm set revealed the presence of two main groups. The application of optimized treatments based on the general linear model (GLM) and the mixed linear model (MLM) allowed the detection of 14 SNP markers significantly associated with broomrape resistance. The highest number of marker-trait associations were identified on chromosome 3, clustered in two different genomic regions of this chromosome. Other associations were identified on chromosomes 5, 10, 13, and 16. Candidate genes for the main genomic regions associated with broomrape resistance were studied and discussed. Particularly, two significant SNPs on chromosome 3 associated with races EFR and FGV were found at two tightly linked SWEET sugar transporter genes. The results of this study have confirmed the role of some QTL on resistance to sunflower broomrape and have revealed new ones that may play an important role in the development of durable resistance to this parasitic weed in sunflower.

3.
Front Plant Sci ; 10: 797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275343

RESUMO

Sunflower broomrape (Orobanche cumana Wallr.) is a holoparasitic plant that causes major yield losses to sunflower crops in the Old World. Efforts to understand how this parasitic weed recognizes and interacts with sunflowers are important for developing long-term genetic resistance strategies. However, such studies are hampered by the lack of genetic tools for O. cumana. The objectives of this research were to construct a genetic linkage map of this species using SSR and SNP markers, and mapping the Pg locus that is involved in plant pigmentation. The genetic map was developed from the progenies of a cross between the O. cumana inbred lines EK-12 and EK-A1, which originated from populations belonging to two distant and geographically separated gene pools identified in Spain. The inbred lines also differed in plant pigmentation, with EK-A1 lacking anthocyanin pigmentation (pgpg genotype). A genetic map comprising 26 SSR and 701 SNP markers was constructed, which displayed 19 linkage groups (LGs), corresponding to the 19 chromosome pairs of O. cumana. The total length of the map was 1795.7 cM, with an average distance between two adjacent positions of 2.5 cM and a maximum map distance of 41.9 cM. The Pg locus mapped to LG19 between the SNP markers OS02468 and OS01653 at 7.5 and 3.4 cM, respectively. This study constitutes the first linkage map and trait mapping study in Orobanche spp., laying a key foundation for further genome characterization and providing a basis for mapping additional traits such as those having a key role in parasitism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA