Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 109(4): 804-815, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797611

RESUMO

The leaf of a deciduous species completes its life cycle in a few months. During leaf maturation, osmolyte accumulation leads to a significant reduction of the turgor loss point (ΨTLP ), a known marker for stomatal closure. Here we exposed two grapevine cultivars to drought at three different times during the growing season to explore if the seasonal decrease in leaf ΨTLP influences the stomatal response to drought. The results showed a significant seasonal shift in the response of stomatal conductance to stem water potential (gs ~Ψstem ), demonstrating that grapevines become increasingly tolerant to low Ψstem as the season progresses in coordination with the decrease in ΨTLP . We also used the SurEau hydraulic model to demonstrate a direct link between osmotic adjustment and the plasticity of gs ~Ψstem . To understand the possible advantages of gs ~Ψstem plasticity, we incorporated a seasonally dynamic leaf osmotic potential into the model that simulated stomatal conductance under several water availabilities and climatic scenarios. The model demonstrated that a seasonally dynamic stomatal closure threshold results in trade-offs: it reduces the time to turgor loss under sustained long-term drought, but increases overall gas exchange particularly under seasonal shifts in temperature and stochastic water availability. A projected hotter future is expected to lower the increase in gas exchange that plants gain from the seasonal shift in gs ~Ψstem . These findings show that accounting for dynamic stomatal regulation is critical for understanding drought tolerance.


Assuntos
Secas , Estômatos de Plantas/metabolismo , Estações do Ano , Água/fisiologia , Adaptação Fisiológica/fisiologia , Osmose/fisiologia , Pressão Osmótica , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Vitis/fisiologia
2.
J Agric Food Chem ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907715

RESUMO

Global warming, heat waves, and seasonal drought pose serious threats to crops, such as grapevine, that are valued for their secondary metabolites, which are of primary importance for the wine industry. Discriminating the effects of distinct environmental factors in the open field is challenging. In the present study, in vitro cultured berries of Sauvignon Blanc were exposed to individual and combined stress factors to investigate the effects on the biosynthesis of the thiol precursors. Our results confirm the complexity and extreme reactivity of the accumulation process in grapes. However, they also indicate that heat stress has a positive effect on the production of the Cys-3SH precursor. Moreover, we identified several candidate genes, such as VvGSTs and VvGGT that are potentially involved in biosynthesis and consistently modulated. Nonetheless, we were unable to conclusively determine the effects of stresses on the biosynthesis of other precursors nor could we formulate hypotheses regarding their regulation.

3.
J Plant Physiol ; 296: 154243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593590

RESUMO

Disentangling the factors that foster the tolerance to water stress in plants could provide great benefits to crop productions. In a two-year experiment, two new PIWI (fungus resistant) grapevine varieties, namely Merlot Kanthus and Sauvignon Kretos (Vitis hybrids), grown in the field, were subjected to two different water regimes: weekly irrigated (IR) or not irrigated (NIR) for two months during the summer. The two varieties exhibited large differences in terms of performance under water-limiting conditions. In particular, Merlot Kanthus strongly decreased stem water potential (Ψs) under water shortage and Sauvignon Kretos maintained higher Ψs values accompanied by generally high stomatal conductance and net carbon assimilation, regardless of the treatment. We hypothesized differences in the hormonal profile that mediate most of the plant responses to stresses or in the regulation of the aquaporins that control the water transport in the leaves. In general, substantial differences were found in the abundance of different hormonal classes, with Merlot Kanthus reporting higher concentrations of cytokinins while Sauvignon Kretos higher concentrations of auxins, jasmonate and salicylic acid. Interestingly, under water stress conditions ABA modulation appeared similar between the two cultivars, while other hormones were differently modulated between the two varieties. Regarding the expression of aquaporin encoding genes, Merlot Kanthus showed a significant downregulation of VvPIP2;1 and VvTIP2;1 in leaves exposed to water stress. Both genes have probably a role in influencing leaf conductance, and VvTIP2;1 has been correlated with stomatal conductance values. This evidence suggests that the two PIWI varieties are characterized by different behaviour in response to drought. Furthermore, the findings of the study may be generalized, suggesting the involvement of a complex hormonal cross-talk and aquaporins in effectively influencing plant performance under water shortage.


Assuntos
Aquaporinas , Vitis , Desidratação/metabolismo , Resistência à Seca , Folhas de Planta/metabolismo , Secas , Aquaporinas/metabolismo , Vitis/fisiologia
4.
Plants (Basel) ; 12(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446973

RESUMO

The pressure chamber is the most used tool for plant water status monitoring. However, species/cultivar and seasonal effects on protocols for reliable water potential determination have not been properly tested. In four grapevine cultivars and two times of the season (early season, Es; late season, Ls, under moderate drought), we assessed the maximum sample storage time before leaf water potential (Ψleaf) measurements and the minimum equilibration time for stem water potential (Ψstem) determination, taking 24 h leaf cover as control. In 'Pinot gris', Ψleaf already decreased after 1 h leaf storage in both campaigns, dropping by 0.4/0.5 MPa after 3 h, while in 'Refosk', it decreased by 0.1 MPa after 1 and 2 h in Es and Ls, respectively. In 'Merlot' and 'Merlot Kanthus', even 3 h storage did not affect Ψleaf. In Es, the minimum Ψstem equilibration was 1 h for 'Refosk' and 10 min for 'Pinot gris' and 'Merlot'. In Ls, 'Merlot Kanthus' required more than 2 h equilibration, while 1 h to 10 min was sufficient for the other cultivars. The observed cultivar and seasonal differences indicate that the proposed tests should be routinely performed prior to experiments to define ad hoc procedures for water status determination.

5.
J Plant Physiol ; 271: 153659, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35299031

RESUMO

Phytoplasmas are sieve-elements restricted wall-less, pleomorphic pathogenic microorganisms causing devastating damage to over 700 plant species worldwide. The invasion of sieve elements by phytoplasmas has several consequences on nutrient transport and metabolism, anyway studies about changes of the mineral-nutrient profile following phytoplasma infections are scarce and offer contrasting results. Here, we examined changes in macro- and micronutrient concentration in tomato plant upon 'Candidatus Phytoplasma solani' infection. To investigate possible effects of 'Ca. P. solani' infection on mineral element allocation, the mineral elements were separately analysed in leaf midrib, leaf lamina and root. Moreover, we focused our analysis on the transcriptional regulation of genes encoding trans-membrane transporters of mineral nutrients. To this aim, a manually curated inventory of differentially expressed genes encoding transporters in tomato leaf midribs was mined from the transcriptional profile of healthy and infected tomato leaf midribs. Results highlighted changes in ion homeostasis in the host plant, and significant modulations at transcriptional level of genes encoding ion transporters and channels.


Assuntos
Phytoplasma , Solanum lycopersicum , Homeostase , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Minerais/metabolismo , Nutrientes , Floema/metabolismo , Phytoplasma/genética , Phytoplasma/metabolismo , Folhas de Planta/metabolismo
6.
J Agric Food Chem ; 70(34): 10429-10442, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35976259

RESUMO

The grapevine source-to-sink ratio and berry exposure to solar radiation both influence grape flavonoid biosynthesis and accumulation. Here, we compared these concepts on cv. Merlot in two different growing locations (Michigan (MI) and Friuli-Venezia Giulia (FVG), IT) to understand whether the environment influences flavonoid sensitivity to these parameters. Three levels of leaf removal (LR0, LR5, LR8) were implemented at the pea-size phenological stage to compare conditions of increased cluster light exposure with a decreasing vine source-to-sink ratio on berry flavonoid accumulation. Treatments did not affect total soluble solids (TSSs) or pH, but titratable acidity (TA) was lower in LR8 at harvest in both locations. LR5 increased anthocyanins and flavonols in MI but decreased most phenolics in FVG. The decreased expression of VviLAR1 and VviF3'5'Hh during ripening supported the lower concentrations of flavan-3-ol monomers and anthocyanins in FVG. In summary, flavonoid biosynthesis and accumulation were more sensitive to solar radiation than the source-to-sink ratio, and the vineyard environment dictated whether solar radiation was beneficial or detrimental to flavonoid biosynthesis.


Assuntos
Vitis , Antocianinas/metabolismo , Flavonoides/metabolismo , Frutas/química , Fenóis/metabolismo , Folhas de Planta/química , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA