Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 32(4): 1309-1319, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35362934

RESUMO

A red-emitting fluorescent Riboflavin (RF)/Polyvinylpyrrolidone (PVP)-coated silver nanoparticles system, λem = 527 nm, Φ = 0.242, with a diameter of the metallic core of 27.33 nm and a zeta potential of - 25.05 mV was prepared and investigated regarding its biological activity. We found that PVP has a key role in RF adsorption around the SNPs surface leading to an enhancement of antioxidant properties (∼70%), low cytotoxicity (> 90% cell viability, at 50 µL/mL, after 48 h of incubation) as well as to an efficient process of its cellular uptake (∼ 60%, after 24 h of incubation) in L929 cells. The results are relevant concerning the involvement of RF and its coenzymes forms in SNPs - based systems, in cellular respiration as well as for future studies as antioxidant marker system on tumoral cells for viewing and monitoring them, by cellular imaging.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antioxidantes/farmacologia , Corantes , Povidona , Riboflavina , Prata
2.
Sensors (Basel) ; 22(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365951

RESUMO

The aim of this study is the preparation of nanostructured copper(II) oxide-based materials (CuONPs) through a facile additive-free polyol procedure that consists of the hydrolysis of copper(II) acetate in 1,4-butane diol and its application in hydrogen peroxide sensing. The nonenzymatic electrochemical sensor for hydrogen peroxide determination was constructed by drop casting the CuONP sensing material on top of a glassy carbon electrode (GCE) modified by a layer of poly(3,4-ethylenedioxythiophene) conducting polymer (PEDOT). The PEDOT layer was prepared on GCE using the sinusoidal voltage method. The XRD pattern of the CuONPs reveals the formation of the monoclinic tenorite phase, CuO, with average crystallite sizes of 8.7 nm, while the estimated band gap from UV-vis spectroscopy is of 1.2 eV. The SEM, STEM, and BET analyses show the formation of quasi-prismatic microaggregates of nanoparticles, with dimensions ranging from 1 µm up to ca. 200 µm, with a mesoporous structure. The developed electrochemical sensor exhibited a linear response toward H2O2 in the concentration range from 0.04 to 10 mM, with a low detection limit of 8.5 µM of H2O2. Furthermore, the obtained sensor possessed an excellent anti-interference capability in H2O2 determination in the presence of interfering compounds such as KNO3 and KNO2.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Peróxido de Hidrogênio/química , Óxidos/química , Eletrodos , Nanopartículas/química , Carbono/química , Técnicas Eletroquímicas/métodos
3.
J Fluoresc ; 29(4): 981-992, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31321643

RESUMO

Nano-size and shape of fluorescent silver nanostructures are important for a wide range of bio-applications, especially as drug delivery systems, imaging and sensing. The aim of the work is to develop a fluorescent silver nano-structured system, synthesized by chemical reduction of aqueous AgNO3 solution by Tryptophan using Dextran 70 as stabilizing agent (SNPsFL). The formed fluorescent nano-system was analyzed by UV-Vis absorption, DLS, SEM, TEM, AFM, steady-state and time resolved fluorescence spectroscopy. TEM analysis showed multi-twined nanoparticle, with the size within 15-40 nm. SNPsFL shows the fluorescence emission at 346 nm, the fluorescence quantum yield, Φ = 0.034 and the integrated fluorescence lifetime, <τ > = 1.82 ns. Riboflavin fluorescence behaviour in the RF/SNPsFL system, has been also studied. The results have relevance in using SNPsFL as a potential marker/emissive system to solve various biological barriers in humans, like drug release and protein structure.

4.
Molecules ; 23(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874881

RESUMO

A wide range of hybrid biomaterials has been designed in order to sustain bioremediation processes by associating sol-gel SiO2 matrices with various biologically active compounds (enzymes, antibodies). SiO2 is a widespread, chemically stable and non-toxic material; thus, the immobilization of enzymes on silica may lead to improving the efficiency of biocatalysts in terms of endurance and economic costs. Our present work explores the potential of different hybrid morphologies, based on hollow tubes and solid spheres of amorphous SiO2, for enzyme immobilization and the development of competitive biocatalysts. The synthesis protocol and structural characterization of spherical and tubular SiO2 obtained by the sol gel method were fully investigated in connection with the subsequent immobilization of lipase from Rhizopus orizae. The immobilization is conducted at pH 6, lower than the isoelectric point of lipase and higher than the isoelectric point of silica, which is meant to sustain the physical interactions of the enzyme with the SiO2 matrix. The morphological, textural and surface properties of spherical and tubular SiO2 were investigated by SEM, nitrogen sorption, and electrokinetic potential measurements, while the formation and characterization of hybrid organic-inorganic complexes were studied by UV-VIS, FTIR-ATR and fluorescence spectroscopy. The highest degree of enzyme immobilization (as depicted from total organic carbon) was achieved for tubular morphology and the hydrolysis of p-nitrophenyl acetate was used as an enzymatic model reaction conducted in the presence of hybrid lipase⁻SiO2 complex.


Assuntos
Enzimas Imobilizadas/metabolismo , Géis , Lipase/metabolismo , Dióxido de Silício/química , Catálise , Técnicas Eletroquímicas/métodos , Concentração de Íons de Hidrogênio , Cinética , Luminescência , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Phys Chem Chem Phys ; 18(44): 30794-30807, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27801475

RESUMO

ZnO-carbon composite spheres were synthesized via starch hydrothermal carbonization (HTC) in the presence of a soluble zinc salt (acetate), followed by thermal processing under an argon atmosphere. Besides sustainability, the one-pot procedure represents a scalable synthesis of tailored carbon-metal oxide spheres with a structurally-ordered carbon matrix obtained at a relatively low temperature (700 °C). The ability of zinc cations to develop different linkages with starch's hydrophilic functional groups and to act as external nucleators determines an increase in HTC yield; the effect is obvious even in the presence of small concentrations of zinc in the reaction medium (0.005 M), thus providing a way to improve the carbonization process efficiency. It is also shown that zinc content is the control vector of the spherical composite's properties: a variation from 0.3 to 4.8 at% not only induces a variation in their size (200 nm-10 µm), interconnectivity (from disperse spheres to necklace-like aggregations), surface area and connected porosity (from micro- to mesoporosity), but also of their electrochemical and white light adsorption and emission features. Since the variation in zinc content is made by a simple adjustment of the raw material concentrations, the functionality of these carbon-based materials can be modulated in a straightforward manner.

6.
J Mater Sci Mater Med ; 25(4): 1099-114, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24452270

RESUMO

Samples of the quaternary Ti-20Nb-10Zr-5Ta alloy were immersed in Hanks' simulated physiological solution and in minimum essential medium (MEM) for 25 days. Samples of Ti metal served as controls. During immersion, the concentration of ions dissolved in MEM was measured by inductively coupled plasma mass spectrometry, while at the end of the experiment the composition of the surface layers was analyzed by X-ray photoelectron spectroscopy, and their morphology by scanning electron microscopy equipped for chemical analysis. The surface layer formed during immersion was comprised primarily of TiO2 but contained oxides of alloying elements as well. The degree of oxidation differed for different metal cations; while titanium achieved the highest valency, tantalum remained as the metal or is oxidized to its sub-oxides. Calcium phosphate was formed in both solutions, while formation of organic-related species was observed only in MEM. Dissolution of titanium ions was similar for metal and alloy. Among alloying elements, zirconium dissolved in the largest quantity. The long-term effects of alloy implanted in the recipient's body were investigated in MEM, using two types of human cells-an osteoblast-like cell line and immortalized pulmonary fibroblasts. The in vitro biocompatibility of the quaternary alloy was similar to that of titanium, since no detrimental effects on cell survival, induction of apoptosis, delay of growth, or change in alkaline phosphatase activity were observed on incubation in MEM.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Nióbio/química , Tantálio/química , Titânio/química , Zircônio/química , Fosfatase Alcalina/metabolismo , Ligas/toxicidade , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Soluções Isotônicas , Teste de Materiais , Nióbio/toxicidade , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Espectroscopia Fotoeletrônica , Solubilidade , Propriedades de Superfície , Tantálio/toxicidade , Titânio/toxicidade , Zircônio/toxicidade
7.
Materials (Basel) ; 16(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37512174

RESUMO

Wastewater treatment targeting reuse may limit water scarcity. Photocatalysis is an advanced oxidation process that may be employed in the removal of traces of organic pollutants, where the material choice is important. Titanium dioxide (TiO2) is a highly efficient photocatalyst with good aqueous stability. TiO2 powder has a high surface area, thus allowing good pollutant adsorption, but it is difficult to filter for reuse. Thin films have a significantly lower surface area but are easier to regenerate and reuse. In this paper, we report on obtaining sol-gel TiO2 thin films on spherical beads (2 mm diameter) with high surface area and easy recovery from wastewater. The complex influence of the substrate morphology (etched up to 48 h in concentrated H2SO4), of the sol dilution with ethanol (1:0 or 1:1), and the number of layers (1 or 2) on the structure, morphology, chemical composition, and photocatalytic performance of the TiO2 thin films is investigated. Etching the substrate for 2 h in H2SO4 leads to uniform, smooth surfaces on which crystalline, homogeneous TiO2 thin films are grown. Films deposited using an undiluted sol are stable in water, with some surface reorganization of the TiO2 aggregates occurring, while the films obtained using diluted sol are partially washed out. By increasing the film thickness through the deposition of a second layer, the roughness increases (from ~50 nm to ~100 nm), but this increase is not high enough to promote higher adsorption or overall photocatalytic efficiency in methylene blue photodegradation (both about 40% after 8 h of UV-Vis irradiation at 55 W/m2). The most promising thin film, deposited on spherical bead substrates (etched for 2 h in H2SO4) using the undiluted sol, with one layer, is highly crystalline, uniform, water-stable, and proves to have good photocatalytic activity.

8.
Gels ; 9(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37232947

RESUMO

Detection of greenhouse gases is essential because harmful gases in the air diffuse rapidly over large areas in a short period of time, causing air pollution that will induce climate change with catastrophic consequences over time. Among the materials with favorable morphologies for gas detection (nanofibers, nanorods, nanosheets), large specific surfaces, high sensitivity and low production costs, we chose nanostructured porous films of In2O3 obtained by the sol-gel method, deposited on alumina transducers, with gold (Au) interdigitated electrodes (IDE) and platinum (Pt) heating circuits. Sensitive films contained 10 deposited layers, involving intermediate and final thermal treatments to stabilize the sensitive film. The fabricated sensor was characterized using AFM, SEM, EDX and XRD. The film morphology is complex, containing fibrillar formations and some quasi-spherical conglomerates. The deposited sensitive films are rough, thus favoring gas adsorption. Ozone sensing tests were performed at different temperatures. The highest response of the ozone sensor was recorded at room temperature, considered to be the working temperature for this specific sensor.

9.
Materials (Basel) ; 16(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176212

RESUMO

ZnO and Al-doped ZnO (AZO) thin films were prepared using the sol-gel method and deposited on a Silicon (Si(100)) substrate using the dipping technique. The structure, morphology, thickness, optical constants in the spectral range 300-1700 nm, bandgap (Eg) and photoluminescence (PL) properties of the films were analyzed using X-ray diffractometry (XRD), X-ray fluorescence (XRF), atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), Raman analysis and PL spectroscopy. The results of the structure and morphology analyses showed that the thin films are polycrystalline with a hexagonal wurtzite structure, as well as continuous and homogeneous. The PL background and broader peaks observable in the Raman spectra of the AZO film and the slight increase in the optical band gap of the AZO thin film, compared to undoped ZnO, highlight the effect of defects introduced into the ZnO lattice and an increase in the charge carrier density in the AZO film. The PL emission spectra of the AZO thin film showed a strong UV line corresponding to near-band-edge ZnO emission along with weak green and red emission bands due to deep-level defects, attributed to the oxygen-occupied zinc vacancies (OZn lattice defects).

10.
Gels ; 9(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37623092

RESUMO

This article presents a layered mixed oxide thin film composed of Sn, Ti, Zn, and Pr obtained by sol-gel deposition for gas sensing applications. The film was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-Vis spectroscopy, Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and Electrochemical impedance spectroscopy (EIS). X-ray diffraction results showed the presence of a single crystalline phase with a cassiterite-like structure. Raman spectroscopy revealed characteristic bands of oxygen-deficient SnO2-based nanocrystallites. The band gap energy calculated from UV-Vis spectroscopy is Eg = 3.83 eV. The XPS proved the presence on the surface of all elements introduced by the inorganic precursors as well as their oxidation states. Thus, Sn4+, Ti4+, Zn2+, and Pr3+ were detected on the surface. Moreover, by XPS, we highlighted the presence of OH groups and water adsorbed on the surface. SEM showed the five-layer morphology of the film after five successive depositions. Electrochemical properties were determined by EIS-impedance spectroscopy. The selectivity for gas sensing was also investigated for methane, propane, and formaldehyde and the gas sensing mechanism was explained. The results indicated that the mixed oxide thin film exhibited high sensitivity and selectivity towards specific gases.

11.
Gels ; 9(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37623119

RESUMO

Chitosan-based hydrogels have gained significant attention for their potential applications in water treatment and purification due to their remarkable properties such as bioavailability, biocompatibility, biodegradability, environmental friendliness, high pollutants adsorption capacity, and water adsorption capacity. This article comprehensively reviews recent advances in chitosan-based hydrogel materials for water purification applications. The synthesis methods, structural properties, and water purification performance of chitosan-based hydrogels are critically analyzed. The incorporation of various nanomaterials into chitosan-based hydrogels, such as nanoparticles, graphene, and metal-organic frameworks, has been explored to enhance their performance. The mechanisms of water purification, including adsorption, filtration, and antimicrobial activity, are also discussed in detail. The potential of chitosan-based hydrogels for the removal of pollutants, such as heavy metals, organic contaminants, and microorganisms, from water sources is highlighted. Moreover, the challenges and future perspectives of chitosan-based hydrogels in water treatment and water purification applications are also illustrated. Overall, this article provides valuable insights into the current state of the art regarding chitosan-based hydrogels for water purification applications and highlights their potential for addressing global water pollution challenges.

12.
Gels ; 9(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37504418

RESUMO

Aloe vera-based hydrogels have emerged as promising platforms for the delivery of therapeutic agents in wound dressings due to their biocompatibility and unique wound-healing properties. The present study provides a comprehensive overview of recent advances in the application of Aloe vera-based hydrogels for wound healing. The synthesis methods, structural characteristics, and properties of Aloe vera-based hydrogels are discussed. Mechanisms of therapeutic agents released from Aloe vera-based hydrogels, including diffusion, swelling, and degradation, are also analyzed. In addition, the therapeutic effects of Aloe vera-based hydrogels on wound healing, as well as the reduction of inflammation, antimicrobial activity, and tissue regeneration, are highlighted. The incorporation of various therapeutic agents, such as antimicrobial and anti-inflammatory ones, into Aloe vera-based hydrogels is reviewed in detail. Furthermore, challenges and future prospects of Aloe vera-based hydrogels for wound dressing applications are considered. This review provides valuable information on the current status of Aloe vera-based hydrogels for the delivery of therapeutic agents in wound dressings and highlights their potential to improve wound healing outcomes.

13.
Gels ; 9(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37623105

RESUMO

Nanostructured oxides (SiO2, TiO2) were synthesized using the sol-gel method and modified with noble metal nanoparticles (Pt, Au) and ruthenium dye to enhance light harvesting and promote the photogeneration of reactive oxygen species, namely singlet oxygen (1O2) and hydroxyl radical (•OH). The resulting nanostructures were embedded in a transparent polyvinyl alcohol (PVA) hydrogel. Morphological and structural characterization of the bare and modified oxides was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-Vis spectroscopy, and X-ray photoelectron spectroscopy (XPS). Additionally, electrokinetic potential measurements were conducted. Crystallinity data and elemental analysis of the investigated systems were obtained through X-ray diffraction and X-ray fluorescence analyses, while the chemical state of the elements was determined using XPS. The engineered materials, both as simple powders and embedded in the hydrogel, were evaluated for their ability to generate reactive oxygen species (ROS) under visible and simulated solar light irradiation to establish a correlation with their antibacterial activity against Staphylococcus aureus. The generation of singlet oxygen (1O2) by the samples under visible light exposure can be of significant importance for their potential use in biomedical applications.

14.
Antioxidants (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36978939

RESUMO

ZnSe, ZnSe-TiO2 microspheres and nanostructured TiO2 obtained by hydrothermal and sol-gel methods were tested against Staphylococcus aureus ATCC 25923 and Micrococcus lysodeikticus ATCC 4698 before and after lysozyme (Lys) loading. Morphological characterization of inorganic matrices and hybrid organic-inorganic complexes were performed by microscopy techniques (SEM, AFM and Dark Field Hyperspectral Microscopy). Light absorption properties of ZnSe, ZnSe-TiO2 and TiO2 powders were assessed by UV-visible spectroscopy and their ability to generate reactive oxygen species (•OH and O2•-) under visible light irradiation was investigated. Antibacterial activity of ZnSe, ZnSe-TiO2, TiO2, Lys/ZnSe, Lys/ZnSe-TiO2 and Lys/TiO2 samples under exposure to visible light irradiation (λ > 420 nm) was tested against Staphylococcus aureus and Micrococcus lysodeikticus and correlated with ROS photogeneration.

15.
J Funct Biomater ; 14(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36826897

RESUMO

Mg is a material of choice for biodegradable implants. The main challenge for using Mg in temporary implants is to provide protective surfaces that mitigate its rapid degradation in biological fluids and also confer sufficient cytocompatibility and bacterial resistance to Mg-coated surfaces. Even though carbonate mineralization is the most important source of biominerals, such as the skeletons and shells of many marine organisms, there has been little success in the controlled growth of carbonate layers by synthetic processes. We present here the formation mechanism, antibacterial activity, and cell viability of magnesian calcite biomimetic coatings grown on biodegradable Mg via a green, one-step route. Cell compatibility assessment showed cell viability higher than 80% after 72 h using fibroblast cells (NCTC, clone L929) and higher than 60% after 72 h using human osteoblast-like cells (SaOS-2); the cells displayed a normal appearance and a density similar to the control sample. Antimicrobial potential evaluation against both Gram-positive (Staphylococcus aureus (ATCC 25923)) and Gram-negative (Pseudomonas aeruginosa (ATCC 27853)) strains demonstrated that the coated samples significantly inhibited bacterial adhesion and biofilm formation compared to the untreated control. Calcite coatings grown on biodegradable Mg by a single coating process showed the necessary properties of cell compatibility and bacterial resistance for application in surface-modified Mg biomaterials for temporary implants.

16.
Gels ; 9(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367125

RESUMO

The removal of pharmaceutical contaminants from wastewater has gained considerable attention in recent years, particularly in the advancements of hydrogel-based adsorbents as a green solution for their ease of use, ease of modification, biodegradability, non-toxicity, environmental friendliness, and cost-effectiveness. This study focuses on the design of an efficient adsorbent hydrogel based on 1% chitosan, 40% polyethylene glycol 4000 (PEG4000), and 4% xanthan gum (referred to as CPX) for the removal of diclofenac sodium (DCF) from water. The interaction between positively charged chitosan and negatively charged xanthan gum and PEG4000 leads to strengthening of the hydrogel structure. The obtained CPX hydrogel, prepared by a green, simple, easy, low-cost, and ecological method, has a higher viscosity due to the three-dimensional polymer network and mechanical stability. The physical, chemical, rheological, and pharmacotechnical parameters of the synthesized hydrogel were determined. Swelling analysis demonstrated that the new synthetized hydrogel is not pH-dependent. The obtained adsorbent hydrogel reached the adsorption capacity (172.41 mg/g) at the highest adsorbent amount (200 mg) after 350 min. In addition, the adsorption kinetics were calculated using a pseudo first-order model and Langmuir and Freundlich isotherm parameters. The results demonstrate that CPX hydrogel can be used as an efficient option to remove DCF as a pharmaceutical contaminant from wastewater.

17.
Polymers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904552

RESUMO

The present research focuses on the physicochemical and pharmacotechnical properties of new hydrogels obtained using allantoin, xanthan gum, salicylic acid and different concentrations of Aloe vera (5, 10, 20% w/v in solution; 38, 56, 71 wt% in dry gels). The thermal behavior of Aloe vera composite hydrogels was studied using DSC and TG/DTG analyses. The chemical structure was investigated using different characterization methods (XRD, FTIR and Raman spectroscopies) and the morphology of the hydrogels was studied SEM and AFM microscopy. Pharmacotechnical evaluation on tensile strength and elongation, moisture content, swelling and spreadability was also completed. Physical evaluation confirmed that the appearance of the prepared Aloe vera based hydrogels was homogeneous and the color varied from pale beige to deep opaque beige with increasing Aloe vera concentration. All other evaluation parameters, e.g., pH, viscosity, spreadability and consistency were found to be adequate in all hydrogel formulations. SEM and AFM images show that the structure of the hydrogels condensed into homogeneous polymeric solids with the addition of Aloe vera, in accordance with the decrease in peak intensities observed via XRD analysis. These results suggest interactions between the hydrogel matrix and Aloe vera as observed via FTIR and TG/DTG and DSC analyses. Considering that Aloe vera content higher than 10% (w/v) did not stimulate further interactions, this formulation (FA-10) can be used for further biomedical applications.

18.
Gels ; 8(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36354631

RESUMO

Methane is a colorless/odorless major greenhouse effect gas, which can explode when it accumulates at concentrations above 50,000 ppm. Its detection cannot be performed without specialized equipment, namely sensing devices. A series of MOX sensors (chemiresistors type), with CoO and CuO sensitive films were obtained using an eco-friendly and low-cost deposition technique (sol-gel). The sensing films were characterized using AFM and SEM as thin film. The transducers are based on an alumina wafer, with Au or Pt interdigital electrodes (IDE) printed onto the alumina surface. The sensor response was recorded upon sensor exposure to different methane concentrations (target gas) under lab conditions (dried target and carrier gas from gas cylinders), in a constant gas flow, with target gas concentrations in the 5-2000 ppm domain and a direct current (DC) applied to the IDE as sensor operating voltage. Humidity and cross-sensitivity (CO2) measurements were performed, along with sensor stability measurements, to better characterize the obtained sensors. The obtained results emphasize good 3-S sensor parameters (sensitivity, partial selectivity and stability) and also short response time and complete sensor recovery, completed by a low working temperature (220 °C), which are key factors for further development of a new commercial chemiresistor for methane detection.

19.
Gels ; 8(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36354625

RESUMO

The aim of the present study was the development of Nb-doped ITO thin films for carbon monoxide (CO) sensing applications. The detection of CO is imperious because of its high toxicity, with long-term exposure having a negative impact on human health. Using a feasible sol-gel method, the doped ITO thin films were prepared at room temperature and deposited onto various substrates (Si, SiO2/glass, and glass). The structural, morphological, and optical characterization was performed by the following techniques: X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV/Vis/NIR spectroscopic ellipsometry (SE). The analysis revealed a crystalline structure and a low surface roughness of the doped ITO-based thin films. XTEM analysis (cross-sectional transmission electron microscopy) showed that the film has crystallites of the order of 5-10 nm and relatively large pores (around 3-5 nm in diameter). A transmittance value of 80% in the visible region and an optical band-gap energy of around 3.7 eV were found for dip-coated ITO/Nb films on SiO2/glass and glass supports. The EDX measurements proved the presence of Nb in the ITO film in a molar ratio of 3.7%, close to the intended one (4%). Gas testing measurements were carried out on the ITO undoped and doped thin films deposited on glass substrate. The presence of Nb in the ITO matrix increases the electrical signal and the sensitivity to CO detection, leading to the highest response for 2000 ppm CO concentration at working temperature of 300 °C.

20.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144974

RESUMO

This work presents the synthesis of nanostructured TiO2 modified with noble metal nanoparticles (Au, Ag) and lysozyme and coated on titanium foil. Moreover, the specific structural and functional properties of the resulting inorganic and hybrid materials were explored. The purpose of this study was to identify the key parameters for developing engineered coatings on titanium foil appropriate for efficient dental implants with intrinsic antibacterial activity. TiO2 nanoparticles obtained using the sol-gel method were deposited on Ti foil and modified with Au/Ag nanoparticles. Morphological and structural investigations (scanning electron and atomic force microscopies, X-ray diffraction, photoluminescence, and UV-Vis spectroscopies) were carried out for the characterization of the resulting inorganic coatings. In order to modify their antibacterial activity, which is essential for safe dental implants, the following aspects were investigated: (a) singlet oxygen (1O2) generation by inorganic coatings exposed to visible light irradiation; (b) the antibacterial behavior emphasized by titania-based coatings deposited on titanium foil (TiO2/Ti foil; Au-TiO2/Ti foil, Ag-TiO2/Ti foil); (c) the lysozyme bioactivity on the microbial substrate (Micrococcus lysodeicticus) after its adsorption on inorganic surfaces (Lys/TiO2/Ti foil; Lys/Au-TiO2/Ti foil, Lys/Ag-TiO2/Ti foil); (d) the enzymatic activity of the above-mentioned hybrids materials for the hydrolysis reaction of a synthetic organic substrate usually used for monitoring the lysozyme biocatalytic activity, namely, 4-Methylumbelliferyl ß-D-N,N',N″-triacetylchitotrioside [4-MU-ß- (GlcNAc)3]. This was evaluated by identifying the presence of a fluorescent reaction product, 7-hydroxy-4-metyl coumarin (4-methylumbelliferone).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA