Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2203181119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737839

RESUMO

Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly processes, with more than 50 associated diseases that are mostly uncurable. Understanding aggregation mechanisms is thus of fundamental importance and goes in parallel with the structural characterization of the transient oligomers formed during the process. Oligomers have been proven elusive to high-resolution structural techniques, while the large sizes and long time scales, typical of aggregation processes, have limited the use of computational methods to date. To surmount these limitations, we here present multi-eGO, an atomistic, hybrid structure-based model which, leveraging the knowledge of monomers conformational dynamics and of fibril structures, efficiently captures the essential structural and kinetics aspects of protein aggregation. Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of thousands of monomers. The concentration dependence of the simulated kinetics, as well as the structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments carried out on an amyloidogenic peptide from Transthyretin, a protein responsible for one of the most common cardiac amyloidoses. Multi-eGO simulations allow the formation of primary nuclei in a sea of transient lower-order oligomers to be observed over time and at atomic resolution, following their growth and the subsequent secondary nucleation events, until the maturation of multiple fibrils is achieved. Multi-eGO, combined with the many experimental techniques deployed to study protein aggregation, can provide the structural basis needed to advance the design of molecules targeting amyloidogenic diseases.


Assuntos
Amiloide , Agregados Proteicos , Amiloide/química , Simulação por Computador , Cinética , Simulação de Dinâmica Molecular
2.
Mol Ther ; 31(2): 362-373, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36114671

RESUMO

The uneven worldwide vaccination coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and emergence of variants escaping immunity call for broadly effective and easily deployable therapeutic agents. We have previously described the human single-chain scFv76 antibody, which recognizes SARS-CoV-2 Alpha, Beta, Gamma and Delta variants. We now show that scFv76 also neutralizes the infectivity and fusogenic activity of the Omicron BA.1 and BA.2 variants. Cryoelectron microscopy (cryo-EM) analysis reveals that scFv76 binds to a well-conserved SARS-CoV-2 spike epitope, providing the structural basis for its broad-spectrum activity. We demonstrate that nebulized scFv76 has therapeutic efficacy in a severe hACE2 transgenic mouse model of coronavirus disease 2019 (COVID-19) pneumonia, as shown by body weight and pulmonary viral load data. Counteraction of infection correlates with inhibition of lung inflammation, as observed by histopathology and expression of inflammatory cytokines and chemokines. Biomarkers of pulmonary endothelial damage were also significantly reduced in scFv76-treated mice. The results support use of nebulized scFv76 for COVID-19 induced by any SARS-CoV-2 variants that have emerged so far.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Microscopia Crioeletrônica , Aerossóis e Gotículas Respiratórios , Anticorpos , Camundongos Transgênicos , Pulmão , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
Arch Pharm (Weinheim) ; 356(10): e2300116, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37460390

RESUMO

Long QT syndrome (LQTS) is a disorder of cardiac electrophysiology resulting in life-threatening arrhythmias; nowadays, only a few drugs are available for the management of LQTS. Focusing our attention on LQT2, one of the most common subtypes of LQTS caused by mutations in the human ether-à-go-go-related gene (hERG), in the present work, the stereoselectivity of the recently discovered mexiletine-derived urea 8 was investigated on the hERG potassium channel. According to preliminary in silico predictions, in vitro studies revealed a stereoselective behavior, with the meso form showing the greatest hERG opening activity. In addition, functional studies on guinea pig isolated left atria, aorta, and ileum demonstrated that 8 does not present any cardiac or intestinal liability in our ex vivo studies. Due to its overall profile, (R,S)-8 paves the way for the design and development of a new series of compounds potentially useful in the treatment of both congenital and drug-induced forms of LQTS.


Assuntos
Síndrome do QT Longo , Mexiletina , Humanos , Animais , Cobaias , Mexiletina/farmacologia , Simulação de Acoplamento Molecular , Ureia , Relação Estrutura-Atividade , Canais de Potássio/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia
4.
Biophys J ; 120(11): 2276-2286, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33812848

RESUMO

MJ0366 from Methanocaldococcus jannaschii is the smallest topologically knotted protein known to date. 92 residues in length, MJ0366 ties a trefoil (31) knot by threading its C-terminal helix through a buttonhole formed by the remainder of the secondary structure elements. By generating a library of point mutations at positions pertinent to the knot formation, we systematically evaluated the contributions of individual residues to the folding stability and kinetics of MJ0366. The experimental Φ-values were used as restraints to computationally generate an ensemble of conformations that correspond to the transition state of MJ0366, which revealed several nonnative contacts. The importance of these nonnative contacts in stabilizing the transition state of MJ0366 was confirmed by a second round of mutagenesis, which also established the pivotal role of F15 in stapling the network of hydrophobic interactions around the threading C-terminal helix. Our converging experimental and computational results show that, despite the small size, the transition state of MJ0366 is formed at a very late stage of the folding reaction coordinate, following a polarized pathway. Eventually, the formation of extensive native contacts, as well as a number of nonnative ones, leads to the threading of the C-terminal helix that defines the topological knot.


Assuntos
Dobramento de Proteína , Proteínas , Cinética , Methanocaldococcus , Conformação Proteica , Proteínas/genética , Termodinâmica
5.
J Biol Chem ; 295(51): 17698-17712, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454008

RESUMO

Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition. We previously showed that the interaction between two intrinsically disordered domains, NCBD and CID, likely emerged in an ancestral deuterostome organism as a low-affinity interaction that subsequently evolved into a higher-affinity interaction before the radiation of modern vertebrate groups. Here we map native contacts in the transition states of the low-affinity ancestral and high-affinity human NCBD/CID interactions. We show that the coupled binding and folding mechanism is overall similar but with a higher degree of native hydrophobic contact formation in the transition state of the ancestral complex and more heterogeneous transient interactions, including electrostatic pairings, and an increased disorder for the human complex. Adaptation to new binding partners may be facilitated by this ability to exploit multiple alternative transient interactions while retaining the overall binding and folding pathway.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Sequência de Aminoácidos , Animais , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Evolução Molecular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/classificação , Proteínas Intrinsicamente Desordenadas/genética , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Coativador 3 de Receptor Nuclear/química , Coativador 3 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Eletricidade Estática
6.
Proc Natl Acad Sci U S A ; 115(39): 9744-9749, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201720

RESUMO

Cotranslational folding (CTF) is a fundamental molecular process that ensures efficient protein biosynthesis and minimizes the formation of misfolded states. However, the complexity of this process makes it extremely challenging to obtain structural characterizations of CTF pathways. Here, we correlate observations of translationally arrested nascent chains with those of a systematic C-terminal truncation strategy. We create a detailed description of chain length-dependent free energy landscapes associated with folding of the FLN5 filamin domain, in isolation and on the ribosome, and thus, quantify a substantial destabilization of the native structure on the ribosome. We identify and characterize two folding intermediates formed in isolation, including a partially folded intermediate associated with the isomerization of a conserved cis proline residue. The slow folding associated with this process raises the prospect that neighboring unfolded domains might accumulate and misfold during biosynthesis. We develop a simple model to quantify the risk of misfolding in this situation and show that catalysis of folding by peptidyl-prolyl isomerases is sufficient to eliminate this hazard.


Assuntos
Filaminas/biossíntese , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dobramento de Proteína , Modificação Traducional de Proteínas , Deficiências na Proteostase/metabolismo , Ribossomos/metabolismo , Sequências de Repetição em Tandem , Termodinâmica
7.
Biophys J ; 119(5): 978-988, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758421

RESUMO

A growing body of evidences has established that in many cases proteins may preserve most of their function and flexibility in a crystalline environment, and several techniques are today capable to characterize molecular properties of proteins in tightly packed lattices. Intriguingly, in the case of amyloidogenic precursors, the presence of transiently populated states (hidden to conventional crystallographic studies) can be correlated to the pathological fate of the native fold; the low fold stability of the native state is a hallmark of aggregation propensity. It remains unclear, however, to which extent biophysical properties of proteins such as the presence of transient conformations or protein stability characterized in crystallo reflect the protein behavior that is more commonly studied in solution. Here, we address this question by investigating some biophysical properties of a prototypical amyloidogenic system, ß2-microglobulin in solution and in microcrystalline state. By combining NMR chemical shifts with molecular dynamics simulations, we confirmed that conformational dynamics of ß2-microglobulin native state in the crystal lattice is in keeping with what observed in solution. A comparative study of protein stability in solution and in crystallo is then carried out, monitoring the change in protein secondary structure at increasing temperature by Fourier transform infrared spectroscopy. The increased structural order of the crystalline state contributes to provide better resolved spectral components compared to those collected in solution and crucially, the crystalline samples display thermal stabilities in good agreement with the trend observed in solution. Overall, this work shows that protein stability and occurrence of pathological hidden states in crystals parallel their solution counterpart, confirming the interest of crystals as a platform for the biophysical characterization of processes such as unfolding and aggregation.


Assuntos
Simulação de Dinâmica Molecular , Microglobulina beta-2 , Espectroscopia de Ressonância Magnética , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína
8.
J Biol Chem ; 294(4): 1230-1239, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30514761

RESUMO

Many intrinsically disordered proteins (IDPs) attain a well-defined structure in a coupled folding and binding reaction with another protein. Such reactions may involve early to late formation of different native structural regions along the reaction pathway. To obtain insights into the transition state for a coupled binding and folding reaction, we performed restrained molecular dynamics simulations using previously determined experimental binding Φb values of the interaction between two IDP domains: the activation domain from the p160 transcriptional co-activator for thyroid hormone and retinoid receptors (ACTR) and the nuclear co-activator binding domain (NCBD) of CREB-binding protein, each forming three well-defined α-helices upon binding. These simulations revealed that both proteins are largely disordered in the transition state for complex formation, except for two helices, one from each domain, that display a native-like structure. The overall transition state structure was extended and largely dynamic with many weakly populated contacts. To test the transition state model, we combined site-directed mutagenesis with kinetic experiments, yielding results consistent with overall diffuse interactions and formation of native intramolecular interactions in the third NCBD helix during the binding reaction. Our findings support the view that the transition state and, by inference, any encounter complex in coupled binding and folding reactions are structurally heterogeneous and largely independent of specific interactions. Furthermore, experimental Φb values and Brønsted plots suggested that the transition state is globally robust with respect to most mutations but can display more native-like features for some highly destabilizing mutations, possibly because of Hammond behavior or ground-state effects.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Dobramento de Proteína , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/genética , Cristalografia por Raios X , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Mutação , Coativador 3 de Receptor Nuclear/química , Coativador 3 de Receptor Nuclear/genética , Ligação Proteica , Conformação Proteica , Transdução de Sinais
9.
Nucleic Acids Res ; 46(D1): D471-D476, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29136219

RESUMO

The MobiDB (URL: mobidb.bio.unipd.it) database of protein disorder and mobility annotations has been significantly updated and upgraded since its last major renewal in 2014. Several curated datasets for intrinsic disorder and folding upon binding have been integrated from specialized databases. The indirect evidence has also been expanded to better capture information available in the PDB, such as high temperature residues in X-ray structures and overall conformational diversity. Novel nuclear magnetic resonance chemical shift data provides an additional experimental information layer on conformational dynamics. Predictions have been expanded to provide new types of annotation on backbone rigidity, secondary structure preference and disordered binding regions. MobiDB 3.0 contains information for the complete UniProt protein set and synchronization has been improved by covering all UniParc sequences. An advanced search function allows the creation of a wide array of custom-made datasets for download and further analysis. A large amount of information and cross-links to more specialized databases are intended to make MobiDB the central resource for the scientific community working on protein intrinsic disorder and mobility.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Anotação de Sequência Molecular , Software , Sequência de Aminoácidos , Sítios de Ligação , Conjuntos de Dados como Assunto , Ontologia Genética , Humanos , Internet , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
10.
Angew Chem Int Ed Engl ; 59(14): 5771-5781, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31863711

RESUMO

Designed peptides derived from the islet amyloid polypeptide (IAPP) cross-amyloid interaction surface with Aß (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aß amyloid self-assembly. However, the molecular mechanism of their function is not well understood. Using solution-state and solid-state NMR spectroscopy in combination with ensemble-averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3-GI is highly dynamic, can adopt a ß-like structure, and oligomerizes into colloid-like assemblies in a process that is reminiscent of liquid-liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aß40. Sequestration of substrates into these colloid-like structures provides a mechanistic basis for ISM function and the design of novel potent anti-amyloid molecules.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Fragmentos de Peptídeos/antagonistas & inibidores , Peptídeos/química , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Especificidade por Substrato
11.
Proteins ; 87(4): 302-312, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582223

RESUMO

Here a differential geometry (DG) representation of protein backbone is explored on the analyses of protein conformational ensembles. The protein backbone is described by curvature, κ, and torsion, τ, values per residue and we propose 1) a new dissimilarity and protein flexibility measurement and 2) a local conformational clustering method. The methods were applied to Ubiquitin and c-Myb-KIX protein conformational ensembles and results show that κ\τ metric space allows to properly judge protein flexibility by avoiding the superposition problem. The dmax measurement presents equally good or superior results when compared to RMSF, especially for the intrinsically unstructured protein. The clustering method is unique as it relates protein global to local dynamics by providing a global clustering solutions per residue. The methods proposed can be especially useful to the analyses of highly flexible proteins. The software written for the analyses presented here is available at https://github.com/AMarinhoSN/FleXgeo for academic usage only.


Assuntos
Proteínas/química , Animais , Análise por Conglomerados , Humanos , Modelos Moleculares , Análise de Componente Principal , Conformação Proteica , Proteínas Proto-Oncogênicas c-myb/química , Software , Ubiquitina/química
12.
Methods ; 148: 4-8, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30036639

RESUMO

Small molecules with rotatable bonds can occupy different conformational states in solution as a consequence of their thermal fluctuations. The accurate determination of the structures of such states, as well as of their statistical weights, has been challenging because of the technical difficulties in extracting information from experimental measurements, which are normally averaged over the conformational space available. Here, to achieve this objective, we present an approach based on a recently proposed tensor-free method for incorporating NMR residual dipolar couplings as structural restraints in replica-averaged molecular dynamics simulations. This approach enables the information provided by the experimental data to be used in the spirit of the maximum entropy principle to determine the structural ensembles of small molecules. Furthermore, in order to enhance the sampling of the conformational space we incorporated the metadynamics method in the simulations. We illustrate the method in the case of strychnine, determining the three major conformational states of this small molecule and their associated occupation probabilities.


Assuntos
Conformação Molecular , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Estricnina/química , Estricnina/análise
13.
Proc Natl Acad Sci U S A ; 113(26): 7171-6, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27286828

RESUMO

The interaction of the HIV-1 protein transactivator of transcription (Tat) and its cognate transactivation response element (TAR) RNA transactivates viral transcription and represents a paradigm for the widespread occurrence of conformational rearrangements in protein-RNA recognition. Although the structures of free and bound forms of TAR are well characterized, the conformations of the intermediates in the binding process are still unknown. By determining the free energy landscape of the complex using NMR residual dipolar couplings in replica-averaged metadynamics simulations, we observe two low-population intermediates. We then rationally design two mutants, one in the protein and another in the RNA, that weaken specific nonnative interactions that stabilize one of the intermediates. By using surface plasmon resonance, we show that these mutations lower the release rate of Tat, as predicted. These results identify the structure of an intermediate for RNA-protein binding and illustrate a general strategy to achieve this goal with high resolution.


Assuntos
Repetição Terminal Longa de HIV/fisiologia , RNA Viral/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície
14.
Proc Natl Acad Sci U S A ; 113(18): 5012-7, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27092002

RESUMO

The ribosome is increasingly becoming recognized as a key hub for integrating quality control processes associated with protein biosynthesis and cotranslational folding (CTF). The molecular mechanisms by which these processes take place, however, remain largely unknown, in particular in the case of intrinsically disordered proteins (IDPs). To address this question, we studied at a residue-specific level the structure and dynamics of ribosome-nascent chain complexes (RNCs) of α-synuclein (αSyn), an IDP associated with Parkinson's disease (PD). Using solution-state nuclear magnetic resonance (NMR) spectroscopy and coarse-grained molecular dynamics (MD) simulations, we find that, although the nascent chain (NC) has a highly disordered conformation, its N-terminal region shows resonance broadening consistent with interactions involving specific regions of the ribosome surface. We also investigated the effects of the ribosome-associated molecular chaperone trigger factor (TF) on αSyn structure and dynamics using resonance broadening to define a footprint of the TF-RNC interactions. We have used these data to construct structural models that suggest specific ways by which emerging NCs can interact with the biosynthesis and quality control machinery.


Assuntos
Modelos Químicos , Simulação de Acoplamento Molecular , Ribossomos/química , Ribossomos/ultraestrutura , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Propriedades de Superfície
15.
Proteins ; 86(9): 956-964, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29790601

RESUMO

Proteins employ the information stored in the genetic code and translated into their sequences to carry out well-defined functions in the cellular environment. The possibility to encode for such functions is controlled by the balance between the amount of information supplied by the sequence and that left after that the protein has folded into its structure. We study the amount of information necessary to specify the protein structure, providing an estimate that keeps into account the thermodynamic properties of protein folding. We thus show that the information remaining in the protein sequence after encoding for its structure (the 'information gap') is very close to what needed to encode for its function and interactions. Then, by predicting the information gap directly from the protein sequence, we show that it may be possible to use these insights from information theory to discriminate between ordered and disordered proteins, to identify unknown functions, and to optimize artificially-designed protein sequences.


Assuntos
Proteínas/química , Sequência de Aminoácidos , Biologia Computacional , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Termodinâmica
16.
Bioinformatics ; 33(24): 3999-4000, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28961689

RESUMO

SUMMARY: Accurate structural models of biological systems can be obtained by properly combining experimental data with a priori physico-chemical knowledge. Here we present PLUMED-ISDB, an open-source, freely-available module of the popular PLUMED library, which enables the simultaneous determination of structure and dynamics of conformationally heterogeneous systems by integrating experimental data with a priori information. This integration is achieved using metainference, a general Bayesian framework that accounts for both noise in the data and their ensemble-averaged nature. PLUMED-ISDB implements different types of experimental data, such as several NMR observables, FRET, SAXS and cryo-electron microscopy data, and enables modelling structure and dynamics of individual proteins, protein complexes, membrane proteins, RNA and DNA, using a variety of enhanced sampling methods and resolutions of the system. AVAILABILITY AND IMPLEMENTATION: PLUMED-ISDB is freely available at www.plumed.org. CONTACT: mb2006@cam.ac.uk or carlo.camilloni@unimi.it. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Moleculares , Software , Teorema de Bayes , Conformação Molecular
17.
J Chem Phys ; 148(18): 184114, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29764124

RESUMO

Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.

18.
J Biol Chem ; 291(20): 10886-92, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27002146

RESUMO

Although most proteins fold by populating intermediates, the transient nature of such states makes it difficult to characterize their structures. In this work we identified and characterized the structure of an intermediate of the X domain of phosphoprotein (P) of measles virus. We obtained this result by a combination of equilibrium and kinetic measurements and NMR chemical shifts used as structural restraints in replica-averaged metadynamics simulations. The structure of the intermediate was then validated by rationally designing four mutational variants predicted to affect the stability of this state. These results provide a detailed view of an intermediate state and illustrate the opportunities offered by a synergistic use of experimental and computational methods to describe non-native states at atomic resolution.


Assuntos
Vírus do Sarampo/química , Fosfoproteínas/química , Dobramento de Proteína , Proteínas Virais/química , Estrutura Terciária de Proteína
19.
J Am Chem Soc ; 139(20): 6899-6910, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28401755

RESUMO

The nucleation-condensation mechanism represents a major paradigm to understand the folding process of many small globular proteins. Although substantial evidence has been acquired for this mechanism, it has remained very challenging to characterize the initial events leading to the formation of a folding nucleus. To achieve this goal, we used a combination of relaxation dispersion NMR spectroscopy and molecular dynamics simulations to determine ensembles of conformations corresponding to the denatured, transition, and native states in the folding of the activation domain of human procarboxypeptidase A2 (ADA2h). We found that the residues making up the folding nucleus tend to interact in the denatured state in a transient manner and not simultaneously, thereby forming incomplete and distorted versions of the folding nucleus. Only when all the contacts between these key residues are eventually formed can the protein reach the transition state and continue folding. Overall, our results elucidate the mechanism of formation of the folding nucleus of a protein and provide insights into how its folding rate can be modified during evolution by mutations that modulate the strength of the interactions between the residues forming the folding nucleus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Fatores de Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína , Fatores de Transcrição/metabolismo
20.
Phys Chem Chem Phys ; 19(4): 2797-2804, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28067358

RESUMO

RNA molecules in solution tend to undergo structural fluctuations of relatively large amplitude and to populate a range of different conformations some of which with low populations. It is still very challenging, however, to characterise the structures of these low populated states and to understand their functional roles. In the present study, we address this problem by using NMR residual dipolar couplings (RDCs) as structural restraints in replica-averaged metadynamics (RAM) simulations. By applying this approach to a 14-mer RNA hairpin containing the prototypical UUCG tetraloop motif, we show that it is possible to construct the free energy landscape of this RNA molecule. This free energy landscapes reveals the surprisingly rich dynamics of the UUCG tetraloop and identifies the multiple substates that exist in equilibrium owing to thermal fluctuations. The approach that we present is general and can be applied to the study of the free energy landscapes of other RNA or RNA-protein systems.


Assuntos
RNA/química , Termodinâmica , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA