Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Allergy ; 79(4): 1001-1017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37855043

RESUMO

BACKGROUND: IgE cross-sensitization to major birch pollen allergen Bet v 1 and pathogenesis-related (PR10) plant food allergens is responsible for the pollen-food allergy syndrome. METHODS: We designed a recombinant protein, AB-PreS, consisting of non-allergenic peptides derived from the IgE-binding sites of Bet v 1 and the cross-reactive apple allergen, Mal d 1, fused to the PreS domain of HBV surface protein as immunological carrier. AB-PreS was expressed in E. coli and purified by chromatography. The allergenic and inflammatory activity of AB-PreS was tested using basophils and PBMCs from birch pollen allergic patients. The ability of antibodies induced by immunization of rabbits with AB-PreS and birch pollen extract-based vaccines to inhibit allergic patients IgE binding to Bet v 1 and Mal d 1 was assessed by ELISA. RESULTS: IgE-binding experiments and basophil activation test revealed the hypoallergenic nature of AB-PreS. AB-PreS induced lower T-cell activation and inflammatory cytokine production in cultured PBMCs from allergic patients. IgG antibodies induced by five injections with AB-PreS inhibited allergic patients' IgE binding to Bet v 1 and Mal d 1 better than did IgG induced by up to 30 injections of six licensed birch pollen allergen extract-based vaccines. Additionally, immunization with AB-PreS induced HBV-specific antibodies potentially protecting from infection with HBV. CONCLUSION: The recombinant AB-PreS-based vaccine is hypoallergenic and superior over currently registered allergen extract-based vaccines regarding the induction of blocking antibodies to Bet v 1 and Mal d 1 in animals.


Assuntos
Hipersensibilidade Alimentar , Malus , Animais , Humanos , Coelhos , Betula , Proteínas Recombinantes de Fusão , Pólen , Escherichia coli , Antígenos de Plantas , Imunoglobulina E , Alérgenos , Hipersensibilidade Alimentar/prevenção & controle , Vacinas Sintéticas , Imunoglobulina G , Proteínas de Plantas
2.
Allergy ; 78(12): 3136-3153, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37701941

RESUMO

BACKGROUND: The nature of epitopes on Bet v 1 recognized by natural IgG antibodies of birch pollen allergic patients and birch pollen-exposed but non-sensitized subjects has not been studied in detail. OBJECTIVE: To investigate IgE and IgG recognition of Bet v 1 and to study the effects of natural Bet v 1-specific IgG antibodies on IgE recognition of Bet v 1 and Bet v 1-induced basophil activation. METHODS: Sera from birch pollen allergic patients (BPA, n = 76), allergic patients without birch pollen allergy (NBPA, n = 40) and non-allergic individuals (NA, n = 48) were tested for IgE, IgG as well as IgG1 and IgG4 reactivity to folded recombinant Bet v 1, two unfolded recombinant Bet v 1 fragments comprising the N-terminal (F1) and C-terminal half of Bet v 1 (F2) and unfolded peptides spanning the corresponding sequences of Bet v 1 and the apple allergen Mal d 1 by ELISA or micro-array analysis. The ability of Bet v 1-specific serum antibodies from non-allergic subjects to inhibit allergic patients IgE or IgG binding to rBet v 1 or to unfolded Bet v 1-derivatives was assessed by competition ELISAs. Furthermore, the ability of serum antibodies from allergic and non-allergic subjects to modulate Bet v 1-induced basophil activation was investigated using rat basophilic leukaemia cells expressing the human FcεRI which had been loaded with IgE from BPA patients. RESULTS: IgE antibodies from BPA patients react almost exclusively with conformational epitopes whereas IgG, IgG1 and IgG4 antibodies from BPA, NBPA and NA subjects recognize mainly unfolded and sequential epitopes. IgG competition studies show that IgG specific for unfolded/sequential Bet v 1 epitopes is not inhibited by folded Bet v 1 and hence the latter seem to represent cryptic epitopes. IgG reactivity to Bet v 1 peptides did not correlate with IgG reactivity to the corresponding Mal d 1 peptides and therefore does not seem to be a result of primary sensitization to PR10 allergen-containing food. Natural Bet v 1-specific IgG antibodies inhibited IgE binding to Bet v 1 only poorly and could even enhance Bet v 1-specific basophil activation. CONCLUSION: IgE and IgG antibodies from BPA patients and birch pollen-exposed non-sensitized subjects recognize different epitopes. These findings explain why natural allergen-specific IgG do not protect against allergic symptoms and suggest that allergen-specific IgE and IgG have different clonal origin.


Assuntos
Hipersensibilidade Alimentar , Pólen , Ratos , Animais , Humanos , Epitopos , Antígenos de Plantas , Alérgenos , Imunoglobulina G , Imunoglobulina E , Peptídeos , Proteínas de Plantas , Proteínas Recombinantes
3.
Semin Immunol ; 30: 67-80, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28939389

RESUMO

Several studies conducted in animal models for immunologically-mediated hypersensitivity diseases have shown that oral administration of antigens early in life can prevent the development of specific humoral and cellular immune responses and thus hypersensitivity reactions to the respective antigens. Such data were also obtained in models for Immunoglobulin E (IgE)-associated allergy, the most common hypersensitivity disease affecting more than 25% of the population. Based on data obtained in animal models for allergy several clinical intervention studies have been conducted in children to study if oral administration of materials containing allergens or allergen-derived peptides early in life can prevent the subsequent development of allergy. In this article we argue that oral tolerance induction could be a potent way to prevent allergy and may be even improved regarding efficacy provided that well-defined allergen molecules and/or allergen-derivatives were used in optimized dose regimens and periods of intervention. The knowledge regarding the molecular and immunological characteristics of allergens which has been achieved in the last decades is a prerequisite for such a treatment. In fact, defined recombinant allergens/allergen derivatives and allergen-derived synthetic peptides from the most common allergen sources are now available for targeted intervention. Moreover, molecular allergy diagnosis allows deciphering the disease-causing relevant allergens for different regions in the world allowing composing cocktails of tolerogens according to the needs of populations from different parts of the world. Furthermore, it is suggested to use defined allergen molecules and epitopes in the analysis of clinical tolerance studies. This will allow understanding if clinical unresponsiveness is due to true immunological tolerance or to other mechanisms such as induction of blocking antibodies or cellular immunomodulation. Using molecularly defined tolerogens it can now be explored if oral tolerance induction is a powerful strategy to prevent IgE-associated allergy.


Assuntos
Alérgenos/uso terapêutico , Hipersensibilidade/imunologia , Tolerância Imunológica , Peptídeos/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Administração Oral , Alérgenos/genética , Alérgenos/imunologia , Animais , Humanos , Hipersensibilidade/terapia , Epitopos Imunodominantes/genética , Imunoglobulina E/metabolismo , Peptídeos/genética , Proteínas Recombinantes/genética
4.
Allergy ; 74(12): 2461-2478, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31228873

RESUMO

BACKGROUND: In the house dust mite (HDM) Dermatophagoides pteronyssinus, Der p 1, 2, 5, 7, 21, and 23 have been identified as the most important allergens. The aim of this study was to define hypoallergenic peptides derived from the sequences of the six allergens and to use the peptides and the complete allergens to study antibody, T cell, and cytokine responses in sensitized and nonsensitized subjects. METHODS: IgE reactivity of HDM-allergic and non-HDM-sensitized individuals to 15 HDM allergens was established using ImmunoCAP ISAC technology. Thirty-three peptides covering the sequences of the six HDM allergens were synthesized. Allergens and peptides were tested for IgE and IgG reactivity by ELISA and ImmunoCAP, respectively. Allergenic activity was determined by basophil activation. CD4+ T cell and cytokine responses were determined in PBMC cultures by CFSE dilution and Luminex technology, respectively. RESULTS: House dust mite allergics showed IgE reactivity only to complete allergens, whereas 31 of the 33 peptides lacked relevant IgE reactivity and allergenic activity. IgG antibodies of HDM-allergic and nonsensitized subjects were directed against peptide epitopes and higher allergen-specific IgG levels were found in HDM allergics. PBMC from HDM-allergics produced higher levels of IL-5 whereas non-HDM-sensitized individuals mounted higher levels of IFN-gamma, IL-17, pro-inflammatory cytokines, and IL-10. CONCLUSION: IgG antibodies in HDM-allergic patients recognize peptide epitopes which are different from the epitopes recognized by IgE. This may explain why naturally occurring allergen-specific IgG antibodies do not protect against IgE-mediated allergic inflammation. A mix of hypoallergenic peptides containing T cell epitopes of the most important HDM allergens was identified.


Assuntos
Alérgenos/imunologia , Epitopos de Linfócito T/imunologia , Hipersensibilidade/imunologia , Peptídeos/imunologia , Pyroglyphidae/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Estudos de Casos e Controles , Cisteína Endopeptidases/imunologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia
5.
Curr Allergy Asthma Rep ; 18(7): 39, 2018 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886521

RESUMO

PURPOSE OF REVIEW: The aim of this article is to discuss how allergen-specific immunotherapy (AIT) can be improved through molecular approaches. We provide a summary of next-generation molecular AIT approaches and of their clinical evaluation. Furthermore, we discuss the potential of next generation molecular AIT forms for the treatment of severe manifestations of allergy and mention possible future molecular strategies for the secondary and primary prevention of allergy. RECENT FINDINGS: AIT has important advantages over symptomatic forms of allergy treatment but its further development is limited by the quality of the therapeutic antigen preparations which are derived from natural allergen sources. The field of allergy diagnosis is currently undergoing a dramatic improvement through the use of molecular testing with defined, mainly recombinant allergens which allows high-resolution diagnosis. Several studies demonstrate that molecular testing in early childhood can predict the development of symptomatic allergy later on in life. Clinical studies indicate that molecular AIT approaches have the potential to improve therapy of allergic diseases and may be used as allergen-specific forms of secondary and eventually primary prevention for allergy.


Assuntos
Alérgenos/imunologia , Dessensibilização Imunológica/métodos , Hipersensibilidade/prevenção & controle , Criança , Humanos , Hipersensibilidade/imunologia , Medicina Molecular , Prevenção Primária
7.
J Allergy Clin Immunol ; 137(2): 351-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26853127

RESUMO

In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination.


Assuntos
Alérgenos/imunologia , Dessensibilização Imunológica , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Peptídeos/imunologia , Vacinas Sintéticas/imunologia , Alérgenos/química , Dessensibilização Imunológica/efeitos adversos , Dessensibilização Imunológica/métodos , Dessensibilização Imunológica/normas , Epitopos de Linfócito B/administração & dosagem , Epitopos de Linfócito B/imunologia , Humanos , Hipersensibilidade/prevenção & controle , Imunoglobulina E/imunologia , Vacinas Sintéticas/administração & dosagem
8.
J Allergy Clin Immunol ; 137(2): 601-609.e8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26518092

RESUMO

BACKGROUND: Late allergic reactions are common in the course of allergen-specific immunotherapy and even occur with allergy vaccines with reduced IgE reactivity. OBJECTIVE: We sought to study atopy patch test (APT) reactions and T-cell responses to the recombinant birch pollen allergen Bet v 1 and recombinant hypoallergenic T-cell epitope-containing Bet v 1 fragments in patients with birch pollen allergy with and without atopic dermatitis (AD). METHODS: A clinical study was conducted in 15 patients with birch pollen allergy with AD (group 1), 5 patients with birch pollen allergy without AD (group 2), 5 allergic patients without birch pollen allergy (group 3), and 5 nonallergic subjects (group 4) by performing skin prick tests and APTs with rBet v 1 and hypoallergenic rBet v 1 fragments. T-cell, cutaneous lymphocyte antigen (CLA)(+) and CCR4(+) T-cell and cytokine responses were studied by thymidine uptake, carboxyfluorescein diacetate succinimidyl ester staining, and Luminex technology, respectively. RESULTS: rBet v 1 and hypoallergenic rBet v 1 fragments induced APT reactions in not only most of the patients with birch pollen allergy with AD (11/15) but also in most of those without AD (4/5). Patients with birch pollen allergy with AD had higher Bet v 1-specific proliferation of CLA(+) and CCR4(+) T cells compared with patients with birch pollen allergy without AD. There were no differences in Bet v 1-specific CLA(+) and CCR4(+) proliferation and cytokine secretion in patients with and without APT reactions. CONCLUSION: Hypoallergenic rBet v 1 fragments induce T cell-dependent late reactions not only in patients with birch pollen allergy with AD but also in those without AD, which can be determined based on APT results but not based on in vitro parameters.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Hipersensibilidade Tardia/diagnóstico , Hipersensibilidade Tardia/imunologia , Testes do Emplastro , Linfócitos T/imunologia , Adulto , Betula/efeitos adversos , Citocinas/biossíntese , Dermatite Atópica/diagnóstico , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Feminino , Liberação de Histamina , Humanos , Hipersensibilidade Tardia/metabolismo , Hipersensibilidade Imediata/diagnóstico , Hipersensibilidade Imediata/imunologia , Hipersensibilidade Imediata/metabolismo , Ativação Linfocitária/imunologia , Masculino , Pólen/imunologia , Rinite Alérgica Sazonal/diagnóstico , Rinite Alérgica Sazonal/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
12.
J Allergy Clin Immunol ; 133(3): 836-45.e11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24182774

RESUMO

BACKGROUND: The major timothy grass pollen allergen Phl p 5 belongs to the most potent allergens involved in hay fever and asthma. OBJECTIVE: This study characterized immune-dominant IgE- and T-cell-recognition sites of Phl p 5. METHODS: Seven peptides, P1 to P7 with a length of 31 to 38 amino acids that spanned the Phl p 5 sequence, were synthesized, characterized by circular dichroism spectroscopy, and tested for IgE reactivity, basophil activation, and T-cell reactivity. Carrier-bound peptides were studied for their ability to induce IgG antibodies in rabbits which recognize Phl p 5 or cross-reactive allergens from different grass species. Peptide-specific antibodies were tested for the capability to inhibit IgE reactivity to Phl p 5 and allergen-induced basophil activation of patients with allergy. RESULTS: The peptides exhibited no secondary structure and showed no IgE reactivity or relevant allergenic activity, indicating that Phl p 5 IgE epitopes are conformational. Except for P3, peptide-specific IgG antibodies blocked IgE binding to Phl p 5 of patients with allergy and cross-reacted with temperate grasses. IgE inhibition experiments and molecular modeling identified several clustered conformational IgE epitopes on the N- as well as C-terminal domain of Phl p 5. P4, which stimulated the strongest T-cell and cytokine responses in patients, was not part of the major IgE-reactive regions. CONCLUSION: Our study shows an interesting dissociation of the major IgE- and T-cell-reactive domains in Phl p 5 which provides a basis for the development of novel forms of immunotherapy that selectively target IgE or T-cell responses.


Assuntos
Imunoglobulina E/imunologia , Proteínas de Plantas/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Basófilos/fisiologia , Criança , Reações Cruzadas , Citocinas/biossíntese , Mapeamento de Epitopos , Feminino , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/química , Estrutura Secundária de Proteína , Coelhos
15.
Front Cell Dev Biol ; 11: 1240289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675143

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by type 2 cytokine-driven skin inflammation and epithelial barrier dysfunction. The latter is believed to allow the increased penetration of chemicals, toxins, and allergens into the skin. House dust mite allergens, particularly Der p 2, are important triggers in sensitized individuals with AD; the precise actions of these allergens in epithelial biology remain, however, incompletely understood. In this study, we compared the effects of the protein allergen Der p 2 and a mix of non-IgE-reactive Der p 2 peptides on skin cells using patch tests in AD patients and healthy participants. We then analyzed mRNA expression profiles of keratinocytes by single-cell RNA-sequencing. We report that existing barrier deficiencies in the non-lesional skin of AD patients allow deep penetration of Der p 2 and its peptides, leading to local microinflammation. Der p 2 protein specifically upregulated genes involved in the innate immune system, stress, and danger signals in suprabasal KC. Der p 2 peptides further downregulated skin barrier genes, in particular the expression of genes involved in cell-matrix and cell-cell adhesion. Peptides also induced genes involved in hyperproliferation and caused disturbances in keratinocyte differentiation. Furthermore, inflammasome-relevant genes and IL18 were overexpressed, while KRT1 was downregulated. Our data suggest that Der p 2 peptides contribute to AD initiation and exacerbation by augmenting hallmark features of AD, such as skin inflammation, barrier disruption, and hyperplasia of keratinocytes.

16.
J Immunol ; 182(10): 6298-306, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19414783

RESUMO

Allergens and rhinovirus infections are among the most common elicitors of respiratory diseases. We report the construction of a recombinant combination vaccine for allergy and rhinovirus infections based on rhinovirus-derived VP1, the surface protein which is critically involved in infection of respiratory cells, and a nonallergenic peptide of the major grass pollen allergen Phl p 1. Recombinant hybrid molecules consisting of VP1 and a Phl p 1-derived peptide of 31 aa were expressed in Escherichia coli. The hybrid molecules did not react with IgE Abs from grass pollen allergic patients and lacked allergenic activity when exposed to basophils from allergic patients. Upon immunization of mice and rabbits, the hybrids did not sensitize against Phl p 1 but induced protective IgG Abs that cross-reacted with group 1 allergens from different grass species and blocked allergic patients' IgE reactivity to Phl p 1 as well as Phl p 1-induced basophil degranulation. Moreover, hybrid-induced IgG Abs inhibited rhinovirus infection of cultured human epithelial cells. The principle of fusing nonallergenic allergen-derived peptides onto viral carrier proteins may be used for the engineering of safe allergy vaccines which also protect against viral infections.


Assuntos
Alérgenos/imunologia , Resfriado Comum/prevenção & controle , Hipersensibilidade/prevenção & controle , Proteínas de Plantas/imunologia , Vacinas Sintéticas/imunologia , Proteínas Virais/imunologia , Animais , Reações Cruzadas/imunologia , Eletroforese em Gel de Poliacrilamida , Humanos , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Coelhos , Proteínas Recombinantes de Fusão/imunologia , Rhinovirus , Vacinas Combinadas/imunologia
17.
J Allergy Clin Immunol ; 126(5): 1024-31, 1031.e1-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20638112

RESUMO

BACKGROUND: At least 100 million patients suffer from birch pollen allergy. OBJECTIVE: Rational design of recombinant derivatives of the major birch pollen allergen, Bet v 1, characterized by reduced IgE reactivity, preservation of sequences relevant for the induction of allergen-specific blocking IgG, and maintenance of T-cell epitopes for immunotherapy of birch pollen allergy. METHODS: Three recombinant mosaic proteins derived from Bet v 1 were generated by reassembly of codon-optimized genes coding for Bet v 1 fragments containing the elements for the induction of allergen-specific blocking IgG antibodies and the major T-cell epitopes. The proteins were expressed in Escherichia coli as recombinant mosaic molecules and compared with the Bet v 1 wild-type protein by chemical and structural methods, regarding IgE-binding and IgG-binding capacity, in basophil activation assays and tested for the in vivo induction of IgG responses. RESULTS: Three recombinant Bet v 1 (rBet v 1) mosaic proteins with strongly reduced IgE reactivity and allergenic activity were expressed and purified. Immunization with the recombinant hypoallergens induced IgG antibodies that inhibited IgE reactivity of patients with allergy to Bet v 1 comparable to those induced with the rBet v 1 wild-type allergen. CONCLUSION: We report the generation and preclinical characterization of 3 hypoallergenic rBet v 1 derivatives with suitable properties for immunotherapy of birch pollen allergy.


Assuntos
Antígenos de Plantas/imunologia , Proteínas de Plantas/síntese química , Proteínas de Plantas/imunologia , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/imunologia , Animais , Antígenos de Plantas/química , Betula/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , Imunoterapia/métodos , Proteínas de Plantas/química , Pólen/imunologia , Coelhos , Proteínas Recombinantes/química , Rinite Alérgica Sazonal/imunologia
18.
Curr Opin Allergy Clin Immunol ; 21(1): 86-99, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369572

RESUMO

PURPOSE OF REVIEW: Allergen-specific immunotherapy (AIT) is a highly economic, effective and disease-modifying form of allergy treatment but requires accurate prescription and monitoring. New molecular approaches are currently under development to improve AIT by reducing treatment-related side effects, cumbersome protocols and patients' compliance. We review the current advances regarding refined diagnosis for prescription and monitoring of AIT and the development of novel molecular vaccines for AIT. Finally, we discuss prophylactic application of AIT. RECENT FINDINGS: There is evidence that molecular allergy diagnosis not only assists in the prescription and monitoring of AIT but also allows a refined selection of patients to increase the likelihood of treatment success. New data regarding the effects of AIT treatment with traditional allergen extracts by alternative routes have become available. Experimental approaches for AIT, such as virus-like particles and cell-based treatments have been described. New results from clinical trials performed with recombinant hypoallergens and passive immunization with allergen-specific antibodies highlight the importance of allergen-specific IgG antibodies for the effect of AIT and indicate opportunities for preventive allergen-specific vaccination. SUMMARY: Molecular allergy diagnosis is useful for the prescription and monitoring of AIT and may improve the success of AIT. Results with molecular allergy vaccines and by passive immunization with allergen-specific IgG antibodies indicate the importance of allergen-specific IgG capable of blocking allergen recognition by IgE and IgE-mediated allergic inflammation as important mechanism for the success of AIT. New molecular vaccines may pave the road towards prophylactic allergen-specific vaccination.


Assuntos
Alérgenos/administração & dosagem , Dessensibilização Imunológica/métodos , Hipersensibilidade/terapia , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Alérgenos/efeitos adversos , Alérgenos/imunologia , Dessensibilização Imunológica/efeitos adversos , Relação Dose-Resposta Imunológica , Humanos , Hipersensibilidade/imunologia , Imunogenicidade da Vacina , Estações do Ano , Prevenção Secundária/métodos , Resultado do Tratamento , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia
19.
Front Immunol ; 12: 744544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795666

RESUMO

IgE-mediated allergy to birch pollen affects more than 100 million patients world-wide. Bet v 1, a 17 kDa protein is the major allergen in birch pollen responsible for allergic rhinoconjunctivitis and asthma in birch pollen allergic patients. Allergen-specific immunotherapy (AIT) based on therapeutic administration of Bet v 1-containing vaccines is an effective treatment for birch pollen allergy but no allergen-specific forms of prevention are available. We developed a mouse model for IgE sensitization to Bet v 1 based on subcutaneous injection of aluminum-hydroxide adsorbed recombinant Bet v 1 and performed a detailed characterization of the specificities of the IgE, IgG and CD4+ T cell responses in sensitized mice using seven synthetic peptides of 31-42 amino acids length which comprised the Bet v 1 sequence and the epitopes recognized by human CD4+ T cells. We then demonstrate that preventive systemic administration of a mix of synthetic non-allergenic Bet v 1 peptides to 3-4 week old mice significantly reduced allergic immune responses, including IgE, IgG, IgE-mediated basophil activation, CD4+ T cell and IL-4 responses to the complete Bet v 1 allergen but not to the unrelated major grass pollen allergen Phl p 5, without inducing Bet v 1-specific allergic sensitization or adaptive immunity. Our results thus demonstrate that early preventive administration of non-allergenic synthetic T cell epitope-containing allergen peptides could be a safe strategy for the prevention of allergen-specific IgE sensitization.


Assuntos
Antígenos de Plantas/imunologia , Dessensibilização Imunológica/métodos , Epitopos de Linfócito T/imunologia , Peptídeos/imunologia , Rinite Alérgica Sazonal/imunologia , Animais , Camundongos , Rinite Alérgica Sazonal/prevenção & controle
20.
Front Immunol ; 11: 1368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733455

RESUMO

Vaccines for infectious diseases have improved the life of the human species in a tremendous manner. The principle of vaccination is to establish de novo adaptive immune response consisting of antibody and T cell responses against pathogens which should defend the vaccinated person against future challenge with the culprit pathogen. The situation is completely different for immunoglobulin E (IgE)-associated allergy, an immunologically-mediated hypersensitivity which is already characterized by increased IgE antibody levels and T cell responses against per se innocuous antigens (i.e., allergens). Thus, allergic patients suffer from a deviated hyper-immunity against allergens leading to inflammation upon allergen contact. Paradoxically, vaccination with allergens, termed allergen-specific immunotherapy (AIT), induces a counter immune response based on the production of high levels of allergen-specific IgG antibodies and alterations of the adaptive cellular response, which reduce allergen-induced symptoms of allergic inflammation. AIT was even shown to prevent the progression of mild to severe forms of allergy. Consequently, AIT can be considered as a form of therapeutic vaccination. In this article we describe a strategy and possible road map for the use of an AIT approach for prophylactic vaccination against allergy which is based on new molecular allergy vaccines. This road map includes the use of AIT for secondary preventive vaccination to stop the progression of clinically silent allergic sensitization toward symptomatic allergy and ultimately the prevention of allergic sensitization by maternal vaccination and/or early primary preventive vaccination of children. Prophylactic allergy vaccination with molecular allergy vaccines may allow halting the allergy epidemics affecting almost 30% of the population as it has been achieved for vaccination against infectious diseases.


Assuntos
Alérgenos/imunologia , Dessensibilização Imunológica , Hipersensibilidade/prevenção & controle , Hipersensibilidade/terapia , Vacinação , Vacinas/imunologia , Alérgenos/administração & dosagem , Animais , Ensaios Clínicos como Assunto , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Imunoglobulina E/imunologia , Peptídeos/imunologia , Gravidez , Prevenção Primária , Prevenção Secundária , Resultado do Tratamento , Vacinação/métodos , Vacinas/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA