Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 224: 115573, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841523

RESUMO

Predicting gully erosion at the continental scale is challenging with current generation models. Moreover, datasets reflecting gully erosion processes are still rather scarce, especially in Africa. This study aims to bridge this gap by collecting an extensive dataset and developing a robust, empirical model that predicts gully head density at high resolution for the African continent. We developed a logistic probability model at 30 m resolution that predicts the likelihood of gully head occurrence using currently available GIS data sources. To calibrate and validate this model, we used a new database of 31,531 gully heads, mapped over 1216 sites across Africa. The exact location of all gully heads was manually mapped by trained experts using high-resolution imagery available from Google Earth. This allowed the extraction of detailed information at the gully head scale, such as the local soil surface slope. Variables included in our empirical model are topography, climate, vegetation, soil characteristics and tectonic context. They are consistent with our current process-based understanding of gully formation and evolution. The model shows that gully occurrences mainly depend on slope steepness, soil texture and vegetation cover and to a lesser extent on rainfall intensity and tectonic activity. The combination of these factors allows for robust and fairly reliable predictions of gully head occurrences, with Areas Under the Curve for validation around 0.8. Based on these results, we present the first gully head susceptibility map for Africa at a 30 m resolution.


Assuntos
Conservação dos Recursos Naturais , Solo , Conservação dos Recursos Naturais/métodos , Sistemas de Informação Geográfica , Clima , África
2.
Nat Food ; 4(6): 518-527, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37337082

RESUMO

As Africa is facing multiple challenges related to food security, frameworks integrating production and availability are urgent for policymaking. Attention should be given not only to gradual socio-economic and climatic changes but also to their temporal variability. Here we present an integrated framework that allows one to assess the impacts of socio-economic development, gradual climate change and climate anomalies. We apply this framework to rice production and consumption in Africa whereby we explicitly account for the continent's dependency on imported rice. We show that socio-economic development dictates rice availability, whereas climate change has only minor effects in the long term and is predicted not to amplify supply shocks. Still, rainfed-dominated or self-producing regions are sensitive to local climatic anomalies, while trade dominates stability in import-dependent regions. Our study suggests that facilitating agricultural development and limiting trade barriers are key in relieving future challenges to rice availability and stability.


Assuntos
Oryza , Desenvolvimento Econômico , Abastecimento de Alimentos , África , Mudança Climática
3.
Sci Total Environ ; 806(Pt 2): 150483, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597548

RESUMO

Lavaka (gullies) are often considered as the prime indication of a currently ongoing human-induced environmental crisis in Madagascar's highlands. Yet, lavaka are known to have existed long before human arrival and account for the majority of the long-term sediment input into the highland rivers and floodplains. The role of anthropogenic disturbances in their formation therefore remains highly debated and it is unclear whether lavaka erosion has recently increased. Here, we address these questions by evaluating the dynamics of lavaka in the Lake Alaotra region (central Madagascar). An overall birth to stabilization ratio of 6.1 indicates a rapid lavaka population growth over the period 1949-2010s. Using data on lavaka development we calculated a mean lavaka population age of 410 ± 40 years and estimate that the disequilibrium started at 870 ± 430 cal. BP. Floodplain sedimentation starts to increase around 1000 cal. BP and peaks over the last 400 years, thereby independently confirming this time frame of increased lavaka activity. Lavaka population dynamics modelling shows that a strong increase in environmental pressure over the last centuries is needed to attain current disequilibrium levels. A general drying of the climate since 950 cal. BP in combination with the introduction of cattle and growing human presence around 1000 cal. BP will likely have triggered the increase in lavaka erosion. However, the recent acceleration cannot be explained by climatic changes alone and seems to be linked to increased anthropogenic pressure on the environment. As such, we offer a fresh and quantitatively supported perspective on lavaka dynamics and human impact in central Madagascar, where our methodology can be used in other locations where similar questions on geomorphic equilibrium need to be answered.


Assuntos
Rios , Animais , Bovinos , Clima , Lagos , Madagáscar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA