Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(19): 7429-7435, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683884

RESUMO

A matrix in highly complex samples can cause adverse effects on the trace analysis of targeted organic compounds. A suitable separation of the target analyte(s) and matrix before the instrumental analysis is often a vital step for which chromatographic cleanup methods remain one of the most frequently used strategies, particularly high-performance liquid chromatography (HPLC). The lack of a simple real-time detection technique that can quantify the entirety of the matrix during this step, especially with gradient solvents, renders optimization of the cleanup challenging. This paper, along with a companion one, explores the possibilities and limitations of quartz crystal microbalance (QCM) dry-mass sensing for quantifying complex organic matrices during gradient HPLC. To this end, this work coupled a QCM and a microfluidic spray dryer with a commercial HPLC system using a flow splitter and developed a calibration and data processing strategy. The system was characterized in terms of detection and quantification limits, with LOD = 4.3-15 mg/L and LOQ = 16-52 mg/L, respectively, for different eluent compositions. Validation of natural organic matter in an environmental sample against offline total organic carbon analysis confirmed the approach's feasibility, with an absolute recovery of 103 ± 10%. Our findings suggest that QCM dry-mass sensing could serve as a valuable tool for analysts routinely employing HPLC cleanup methods, offering potential benefits across various analytical fields.

2.
Anal Bioanal Chem ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849528

RESUMO

The continuous introduction of micropollutants into the environment through livestock farming, agricultural practices, and wastewater treatment is a major concern. Among these pollutants are synthetic sulfonamide antibiotics such as sulfamethoxazole, which are not always fully degraded and pose a risk of fostering antimicrobial resistance. It is challenging to assess the degradation of sulfonamides with conventional concentration measurements. This study introduces compound-specific isotope analysis of nitrogen isotope ratios at natural abundances by derivatization-gas chromatography hyphenated with isotope ratio mass spectrometry (derivatization-GC-IRMS) as a new and more precise method for tracing the origin and degradation of sulfonamides. Here, sulfamethoxazole was used as a model compound to develop and optimize the derivatization conditions using (trimethylsilyl)diazomethane as a derivatization reagent. With the optimized conditions, accurate and reproducible δ15N analysis of sulfamethoxazole by derivatization-GC-IRMS was achieved in two different laboratories with a limit for precise isotope analysis of 3 nmol N on column, corresponding to 0.253 µg non-derivatized SMX. Application of the method to four further sulfonamides, sulfadiazine, sulfadimethoxine, sulfadimidine, and sulfathiazole, shows the versatility of the developed method. Its benefit was demonstrated in a first application, highlighting the possibility of distinguishing sulfamethoxazole from different suppliers and pharmaceutical products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA