Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 11, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117357

RESUMO

Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and validation tools for the study of MOCs.


Assuntos
Produtos Biológicos , Doenças Ósseas Metabólicas , Humanos , Produtos Biológicos/farmacologia
2.
Development ; 138(18): 3897-905, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21862555

RESUMO

The origin of cells that generate the blastema following appendage amputation has been a long-standing question in epimorphic regeneration studies. The blastema is thought to originate from either stem (or progenitor) cells or differentiated cells of various tissues that undergo dedifferentiation. Here, we investigate the origin of cells that contribute to the regeneration of zebrafish caudal fin skeletal elements. We provide evidence that the process of lepidotrichia (bony rays) regeneration is initiated as early as 24 hours post-amputation and that differentiated scleroblasts acquire a proliferative state, detach from the lepidotrichia surface, migrate distally, integrate into the blastema and dedifferentiate. These findings provide novel insights into the origin of cells in epimorphic appendage regeneration in zebrafish and suggest conservation of regeneration mechanisms between fish and amphibians.


Assuntos
Nadadeiras de Animais/fisiologia , Osso e Ossos/fisiologia , Regeneração/fisiologia , Peixe-Zebra/fisiologia , Nadadeiras de Animais/metabolismo , Animais , Animais Geneticamente Modificados , Desenvolvimento Ósseo/genética , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Desdiferenciação Celular/genética , Desdiferenciação Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Osteogênese/genética , Regeneração/genética , Cicatrização/genética , Cicatrização/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
BMC Dev Biol ; 12: 28, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23043290

RESUMO

BACKGROUND: In chondrichthyans, basal osteichthyans and tetrapods, vertebral bodies have cartilaginous anlagen that subsequently mineralize (chondrichthyans) or ossify (osteichthyans). Chondrocytes that form the vertebral centra derive from somites. In teleost fish, vertebral centrum formation starts in the absence of cartilage, through direct mineralization of the notochord sheath. In a second step, the notochord is surrounded by somite-derived intramembranous bone. In several small teleost species, including zebrafish (Danio rerio), even haemal and neural arches form directly as intramembranous bone and only modified caudalmost arches remain cartilaginous. This study compares initial patterns of mineralization in different regions of the vertebral column in zebrafish. We ask if the absence or presence of cartilaginous arches influences the pattern of notochord sheath mineralization. RESULTS: To reveal which cells are involved in mineralization of the notochord sheath we identify proliferating cells, we trace mineralization on the histological level and we analyze cell ultrastructure by TEM. Moreover, we localize proteins and genes that are typically expressed by skeletogenic cells such as Collagen type II, Alkaline phosphatase (ALP) and Osteocalcin (Oc). Mineralization of abdominal and caudal vertebrae starts with a complete ring within the notochord sheath and prior to the formation of the bony arches. In contrast, notochord mineralization of caudal fin centra starts with a broad ventral mineral deposition, associated with the bases of the modified cartilaginous arches. Similar, arch-related, patterns of mineralization occur in teleosts that maintain cartilaginous arches throughout the spine.Throughout the entire vertebral column, we were able to co-localize ALP-positive signal with chordacentrum mineralization sites, as well as Collagen II and Oc protein accumulation in the mineralizing notochord sheath. In the caudal fin region, ALP and Oc signals were clearly produced both by the notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1). CONCLUSIONS: If notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum formation, possibly contributing to the distinct mineralization patterns of zebrafish vertebral column and caudal fin vertebral fusion.


Assuntos
Calcificação Fisiológica , Notocorda/embriologia , Osteocalcina/metabolismo , Coluna Vertebral/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Colágeno Tipo II/metabolismo , Notocorda/citologia , Notocorda/metabolismo , Isoformas de Proteínas/metabolismo , Transporte Proteico , Coluna Vertebral/citologia , Coluna Vertebral/metabolismo , Peixe-Zebra/metabolismo
4.
Evol Dev ; 14(1): 116-27, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23016979

RESUMO

The vertebral column results from a controlled segmentation process associated with two main structures, the notochord and the somites. Pathological fusion of vertebral bodies can result from impaired segmentation during embryonic development or occur postnatally. Here, we explore the process of formation and subsequent fusion of the caudalmost vertebral bodies in zebrafish, where fusion is a normal process, mechanically required to support the caudal fin. To reveal whether the product of fusion is on an evolutionary or a developmental scale, we analyze the mode of formation of vertebral bodies, identify transitory rudiments, and characterize vestiges that indicate previous fusion events. Based on a series of closely spaced ontogenetic stages of cleared and stained zebrafish, parasagittal sections, and detection methods for elastin and mineral, we conclude that the formation of the urostyle involves four fusion events. Although fusion of preural 1 (PU1(+) ) with ural 1 (U1) and fusion within ural 2 (U2(+) ) are no longer traceable during centrum formation (phylogenetic fusion), fusion between the compound centrum [PU1(+) +U1] and U2(+) (ontogenetic fusion) occurs after individualization of the centra. This slow process is the last fusion and perhaps the latest fusion during the evolution of the zebrafish caudal fin endoskeleton. Newly described characters, such as a mineralized subdivision within U2(+) , together with the reinterpretation of known features in an evolutionary-developmental context, strongly suggest that the zebrafish caudal fin endoskeleton is made from more fused vertebral bodies than previously assumed. In addition, these fusion events occur at different developmental levels depending on their evolutionary status, allowing the dissection of fusion processes that have taken place over different evolutionary times.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Evolução Biológica , Peixe-Zebra/crescimento & desenvolvimento , Nadadeiras de Animais/anatomia & histologia , Animais , Peixe-Zebra/anatomia & histologia
5.
Nutrients ; 14(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35334811

RESUMO

Doxorubicin is a widely used chemotherapeutic drug known to induce bone loss. The mechanism behind doxorubicin-mediated bone loss is unclear, but oxidative stress has been suggested as a potential cause. Antioxidants that can counteract the toxic effect of doxorubicin on the bone would be helpful for the prevention of secondary osteoporosis. We used resveratrol, a natural antioxidant, and MitoTEMPO, a mitochondria-targeted antioxidant, to counteract doxorubicin-induced bone loss and mineralization on Sparus aurata larvae. Doxorubicin supplemented Microdiets increased bone deformities, decreased mineralization, and lipid peroxidation, whereas Resveratrol and MitoTEMPO supplemented microdiets improved mineralization, decreased bone deformities, and reversed the effects of doxorubicin in vivo and in vitro, using osteoblastic VSa13 cells. Partial Least-Squares Discriminant Analysis highlighted differences between groups on the distribution of skeletal anomalies and mineralization of skeleton elements. Calcium and Phosphorus content was negatively affected in the doxorubicin supplemented group. Doxorubicin reduced the mRNA expression of antioxidant genes, including catalase, glutathione peroxidase 1, superoxide dismutase 1, and hsp90 suggesting that ROS are central for Doxorubicin-induced bone loss. The mRNA expression of antioxidant genes was significantly increased on resveratrol alone or combined treatment. The length of intestinal villi was increased in response to antioxidants and reduced on doxorubicin. Antioxidant supplements effectively prevent bone deformities and mineralization defects, increase antioxidant response and reverse doxorubicin-induced effects on bone anomalies, mineralization, and oxidative stress. A combined treatment of doxorubicin and antioxidants was beneficial in fish larvae and showed the potential for use in preventing Doxorubicin-induced bone impairment.


Assuntos
Dourada , Animais , Suplementos Nutricionais , Doxorrubicina/toxicidade , Compostos Organofosforados , Piperidinas , Resveratrol/metabolismo , Resveratrol/farmacologia , Dourada/metabolismo
6.
Sci Rep ; 8(1): 3704, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487295

RESUMO

miR-214 is known to play a role in mammalian skeletal development through inhibition of osteogenesis and stimulation of osteoclastogenesis, but data regarding other vertebrates, as well as a possible role in chondrogenesis, remain unknown. Here, we show that miR-214 expression is detected in bone and cartilage of zebrafish skeleton, and is downregulated during murine ATDC5 chondrocyte differentiation. Additionally, we observed a conservation of the transcriptional regulation of miR-214 primary transcript Dnm3os in vertebrates, being regulated by Ets1 in ATDC5 chondrogenic cells. Moreover, overexpression of miR-214 in vitro and in vivo mitigated chondrocyte differentiation probably by targeting activating transcription factor 4 (Atf4). Indeed, miR-214 overexpression in vivo hampered cranial cartilage formation of zebrafish and coincided with downregulation of atf4 and of the key chondrogenic players sox9 and col2a1. We show that miR-214 overexpression exerts a negative role in chondrogenesis by impacting on chondrocyte differentiation possibly through conserved mechanisms.


Assuntos
Condrogênese/fisiologia , MicroRNAs/metabolismo , Animais , Cartilagem/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Camundongos , MicroRNAs/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
FEBS Lett ; 590(8): 1234-41, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27009385

RESUMO

MGP is a protein that was initially associated with the inhibition of calcification in skeleton, soft tissues, and arteries, but more recently also implicated in cancer. In breast cancer, higher levels of MGP mRNA were associated with poor prognosis, but since this deregulation was never demonstrated at the protein level, we postulated the involvement of a post-transcriptional regulatory mechanism. In this work we show that MGP is significantly repressed by miR-155 in breast cancer MCF-7 cells, and concomitantly there is a stimulation of cell proliferation and cell invasiveness. This study brings new insights into the putative involvement of MGP and oncomiR-155 in breast cancer, and may contribute to develop new therapeutic strategies.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação ao Cálcio/genética , Carcinogênese/genética , Proteínas da Matriz Extracelular/genética , MicroRNAs/metabolismo , Transdução de Sinais , Sequência de Bases , Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Células MCF-7 , MicroRNAs/genética , Modelos Biológicos , Invasividade Neoplásica , RNA Interferente Pequeno/metabolismo , Proteína de Matriz Gla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA