Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 299: 120851, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276816

RESUMO

Magnetoencephalography (MEG) is a noninvasive imaging technique used in neuroscience and clinical research. The source estimation of MEG involves solving a highly underdetermined inverse problem, which requires additional constraints to restrict the solution space. Traditional methods tend to obscure the extent of the sources. However, an accurate estimation of the source extent is important for studying brain activity or preoperatively estimating pathogenic regions. To improve the estimation accuracy of the extended source extent, the spatial constraint of sources is employed in the Bayesian framework. For example, the source is decomposed into a linear combination of validated spatial basis functions, which is proved to improve the source imaging accuracy. In this work, we further construct the spatial properties of the source using the diagonal covariance bases (DCB), which we summarize as the source imaging method SI-DCB. In this approach, specifically, the covariance matrix of the spatial coefficients is modeled as a weighted combination of diagonal covariance basis functions. The convex analysis is used to estimate noise and model parameters under the Bayesian framework. Extensive numerical simulations showed that SI-DCB outperformed five benchmark methods in accurately estimating the location and extent of patch sources. The effectiveness of SI-DCB was verified through somatosensory stimulation experiments performed on a 31-channel OPM-MEG system. The SI-DCB correctly identified the source area where each brain response occurred. The superior performance of SI-DCB suggests that it can provide a template approach for improving the accuracy of source extent estimations under a sparse Bayesian framework.

2.
Brain Topogr ; 36(3): 350-370, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046041

RESUMO

Magnetoencephalography (MEG) is a noninvasive functional neuroimaging modality but highly susceptible to environmental interference. Signal space separation (SSS) is a method for improving the SNR to separate the MEG signals from external interference. The origin and truncation values of SSS significantly affect the SSS performance. The origin value fluctuates with respect to the helmet array, and determining the truncation values using the traversal method is time-consuming; thus, this method is inappropriate for optically pumped magnetometer (OPM) systems with flexible array designs. Herein, an automatic optimization method for the SSS parameters is proposed. Virtual sources are set inside and outside the brain to simulate the signals of interest and interference, respectively, via forward model, with the sensor array as prior information. The objective function is determined as the error between the signals from simulated sources inside the brain and the SSS reconstructed signals; thus, the optimized parameters are solved inversely by minimizing the objective function. To validate the proposed method, a simulation analysis and MEG auditory-evoked experiments were conducted. For an OPM sensor array, this method can precisely determine the optimized origin and truncation values of the SSS simultaneously, and the auditory-evoked component, for example, N100, can be accurately located in the temporal cortex. The proposed optimization procedure outperforms the traditional method with regard to the computation time and accuracy, simplifying the SSS process in signal preprocessing and enhancing the performance of SSS denoising.


Assuntos
Encéfalo , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Simulação por Computador , Neuroimagem Funcional
3.
IEEE Trans Med Imaging ; PP2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288067

RESUMO

The accurate estimation of source extent using magnetoencephalography (MEG) is important for the study of preoperative functional localization in epilepsy. Conventional source imaging techniques tend to produce diffuse or focused source estimates that fail to capture the source extent accurately. To address this issue, we propose a novel method called the two-stage Champagne approach (TS-Champagne). TS-Champagne divides source extent estimation into two stages. In the first stage, the Champagne algorithm with noise learning (Champagne-NL) is employed to obtain an initial source estimate. In the second stage, spatial basis functions are constructed from the initial source estimate. These spatial basis functions consist of potential activation source centers and their neighbors, and serve as spatial priors, which are incorporated into Champagne-NL to obtain a final source estimate. We evaluated the performance of TS-Champagne through numerical simulations. TS-Champagne achieved more robust performance under various conditions (i.e., varying source extent, number of sources, signal-to-noise level, and correlation coefficients between sources) than Champagne-NL and several benchmark methods. Furthermore, auditory and median nerve stimulation experiments were conducted using a 31-channel optically pumped magnetometer (OPM)-MEG system. The validation results indicated that the reconstructed source activity was spatially and temporally consistent with the neurophysiological results of previous OPM-MEG studies, further demonstrating the feasibility of TS-Champagne for practical applications.

4.
Comput Methods Programs Biomed ; 254: 108292, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936152

RESUMO

BACKGROUND AND OBJECTIVES: The exploration of various neuroimaging techniques have become focal points within the field of neuroscience research. Magnetoencephalography based on optically pumped magnetometers (OPM-MEG) has shown significant potential to be the next generation of functional neuroimaging with the advantages of high signal intensity and flexible sensor arrangement. In this study, we constructed a 31-channel OPM-MEG system and performed a preliminary comparison of the temporal and spatial relationship between magnetic responses measured by OPM-MEG and blood-oxygen-level-dependent signals detected by functional magnetic resonance imaging (fMRI) during a grasping task. METHODS: For OPM-MEG, the ß-band (15-30 Hz) oscillatory activities can be reliably detected across multiple subjects and multiple session runs. To effectively localize the inhibitory oscillatory activities, a source power-spectrum ratio-based imaging method was proposed. This approach was compared with conventional source imaging methods, such as minimum norm-type and beamformer methods, and was applied in OPM-MEG source analysis. Subsequently, the spatial and temporal responses at the source-level between OPM-MEG and fMRI were analyzed. RESULTS: The effectiveness of the proposed method was confirmed through simulations compared to benchmark methods. Our demonstration revealed an average spatial separation of 10.57 ± 4.41 mm between the localization results of OPM-MEG and fMRI across four subjects. Furthermore, the fMRI-constrained OPM-MEG localization results indicated a more focused imaging extent. CONCLUSIONS: Taken together, the performance exhibited by OPM-MEG positions it as a potential instrument for functional surgery assessment.


Assuntos
Imageamento por Ressonância Magnética , Magnetoencefalografia , Córtex Sensório-Motor , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Córtex Sensório-Motor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Mapeamento Encefálico/métodos , Adulto , Masculino , Algoritmos , Simulação por Computador
5.
J Cereb Blood Flow Metab ; : 271678X241270485, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129194

RESUMO

Brain temperature, a crucial yet under-researched neurophysiological parameter, is governed by the equilibrium between cerebral oxygen metabolism and hemodynamics. Therapeutic hypothermia has been demonstrated as an effective intervention for acute brain injuries, enhancing survival rates and prognosis. The success of this treatment hinges on the precise regulation of brain temperature. However, the absence of comprehensive brain temperature monitoring methods during therapy, combined with a limited understanding of human brain heat transmission mechanisms, significantly hampers the advancement of hypothermia-based neuroprotective therapies. Leveraging the principles of bioheat transfer and MRI technology, this study conducted quantitative analyses of brain heat transfer during mild hypothermia therapy. Utilizing MRI, we reconstructed brain structures, estimated cerebral blood flow and oxygen consumption parameters, and developed a brain temperature calculation model founded on bioheat transfer theory. Employing computational cerebral hemodynamic simulation analysis, we established an intracranial arterial fluid dynamics model to predict brain temperature variations across different therapeutic hypothermia modalities. We introduce a noninvasive, spatially resolved, and optimized mathematical bio-heat model that synergizes model-predicted and MRI-derived data for brain temperature prediction and imaging. Our findings reveal that the brain temperature images generated by our model reflect distinct spatial variations across individual participants, aligning with experimentally observed temperatures.

6.
Comput Biol Med ; 164: 107318, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595517

RESUMO

The advent of optically pumped magnetometer-based magnetoencephalography (OPM-MEG) has introduced new tools for neuroscience and clinical research. As it is still under development, the achievable performance of OPM-MEG remains to be tested, particularly in terms of source localization accuracy, which can be influenced by various factors, including software and hardware aspects. A feasible approach to comprehensively test the performance of the OPM-MEG system is to utilize a phantom that simulates the actual electrophysiological properties of the head while ensuring the precise locations of dipole sources. However, conventional water or dry phantoms can only simulate a single-sphere head model. In this work, a more realistic three-layer phantom was designed and fabricated. The proposed phantom included the scalp, skull, and cortex tissues of the head, as well as the simulated dipole sources. The scalp and cortex tissues were simulated using an electrolyte solution, while the dipole source was constructed from a coaxial cable. All main structures in the phantom were produced using 3D printing techniques, making the phantom easy to manufacture. The fabricated phantom was tested on a 36-channel OPM-MEG system, and the results showed that the dipole source inside the phantom could generate a magnetic field distribution on the scalp that was close to its theoretical values. The average source localization accuracy of 5.51 mm verified the effectiveness of the designed phantom and the performance of our OPM-MEG system. This work provides an effective test platform for OPM-MEG.


Assuntos
Córtex Cerebral , Magnetoencefalografia , Imagens de Fantasmas , Campos Magnéticos , Couro Cabeludo
7.
IEEE Trans Med Imaging ; 42(9): 2706-2713, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37015113

RESUMO

The advent of optically pumped magnetometers (OPMs) facilitates the development of on-scalp magnetoencephalography (MEG). In particular, the triaxial OPM emerged recently, making simultaneous measurements of all three orthogonal components of vector fields possible. The detection of triaxial magnetic fields improves the interference suppression capability and achieves higher source localization accuracy using fewer sensors. The source localization accuracy of MEG is based on the accurate co-registration of MEG and MRI. In this study, we proposed a triaxial co-registration method according to combined principal component analysis and iterative closest point algorithms for use of a flexible cap. A reference phantom with known sensor positions and orientations was designed and constructed to evaluate the accuracy of the proposed method. Experiments showed that the average co-registered position errors of all sensors were approximately 1 mm and average orientation errors were less than 2.5° in the X -and Y orientations and less than 1.6° in the Z orientation. Furthermore, we assessed the influence of co-registration errors on the source localization using simulations. The average source localization error of approximately 1 mm reflects the effectiveness of the co-registration method. The proposed co-registration method facilitates future applications of triaxial sensors on flexible caps.


Assuntos
Encéfalo , Magnetoencefalografia , Magnetoencefalografia/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Couro Cabeludo , Algoritmos
8.
IEEE Trans Biomed Eng ; 69(10): 3131-3141, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35320085

RESUMO

OBJECTIVE: Magnetoencephalography (MEG) is a non-invasive technique that measures the magnetic fields of brain activity. In particular, a new type of optically pumped magnetometer (OPM)-based wearable MEG system has been developed in recent years. Source localization in MEG can provide signals and locations of brain activity. However, conventional source localization methods face the difficulty of accurately estimating multiple sources. The present study presented a new parametric method to estimate the number of sources and localize multiple sources. In addition, we applied the proposed method to a constructed wearable OPM-MEG system. METHODS: We used spatial clustering of the dipole spatial distribution to detect sources. The spatial distribution of dipoles was obtained by segmenting the MEG data temporally into slices and then estimating the parameters of the dipoles on each data slice using the particle swarm optimization algorithm. Spatial clustering was performed using the spatial-temporal density-based spatial clustering of applications with a noise algorithm. The performance of our approach for detecting multiple sources was compared with that of four typical benchmark algorithms using the OPM-MEG sensor configuration. RESULTS: The simulation results showed that the proposed method had the best performance for detecting multiple sources. Moreover, the effectiveness of the method was verified by a multimodel sensory stimuli experiment on a real constructed 31-channel OPM-MEG. CONCLUSION: Our study provides an effective method for the detection of multiple sources. SIGNIFICANCE: With the improvement of the source localization methods, MEG may have a wider range of applications in neuroscience and clinical research.


Assuntos
Magnetoencefalografia , Dispositivos Eletrônicos Vestíveis , Encéfalo , Mapeamento Encefálico/métodos , Análise por Conglomerados , Magnetoencefalografia/métodos
9.
Front Neurosci ; 16: 984036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188451

RESUMO

Magnetoencephalography (MEG) based on optically pumped magnetometers (OPM-MEG) has shown better flexibility in sensor configuration compared with the conventional superconducting quantum interference devices-based MEG system while being better suited for all-age groups. However, this flexibility presents challenges for the co-registration of MEG and magnetic resonance imaging (MRI), hindering adoption. This study presents a toolbox called OMMR, developed in Matlab, that facilitates the co-registration step for researchers and clinicians. OMMR integrates the co-registration methods of using the electromagnetic digitization system and two types of optical scanners (the structural-light and laser scanner). As the first open-source co-registration toolbox specifically for OPM-MEG, the toolbox aims to standardize the co-registration process and set the ground for future applications of OPM-MEG.

10.
iScience ; 25(2): 103752, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35118364

RESUMO

In recent years, optically pumped magnetometer (OPM)-based magnetoencephalography (MEG) has shown potential for analyzing brain activity. It has a flexible sensor configuration and comparable sensitivity to conventional SQUID-MEG. We constructed a 32-channel OPM-MEG system and used it to measure cortical responses to median and ulnar nerve stimulations. Traditional magnetic source imaging methods tend to blur the spatial extent of sources. Accurate estimation of the spatial size of the source is important for studying the organization of brain somatotopy and for pre-surgical functional mapping. We proposed a new method called variational free energy-based spatial smoothing estimation (FESSE) to enhance the accuracy of mapping somatosensory cortex responses. A series of computer simulations based on the OPM-MEG showed better performance than the three types of competing methods under different levels of signal-to-noise ratios, source patch sizes, and co-registration errors. FESSE was then applied to the source imaging of the OPM-MEG experimental data.

11.
iScience ; 25(10): 105177, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36238897

RESUMO

The emergence of the optically pumped magnetometer (OPM)-based magnetoencephalography (MEG) has led to new developments in MEG technology. The source imaging results of different magnetic source imaging (MSI) methods show considerable differences, which makes it difficult for researchers to choose an appropriate method. This study assessed time-domain MSI methods implemented in the Brainstorm, FieldTrip, and SPM12 toolboxes using simulations. We proposed using a metric, variational free energy under the Bayesian framework, as an indicator to evaluate source imaging results because it does not require the ground truth of sources but uses the fitness of the measurement data. Our simulations demonstrated the effectiveness of the variational free energy in indicating the quality of the source reconstruction results. We then applied each MSI method to the real OPM-MEG experimental data. We aimed to highlight the characteristics of each method and provide references for researchers choosing an appropriate MSI method.

12.
Front Neurosci ; 15: 706785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483827

RESUMO

Magnetoencephalography (MEG) can non-invasively measure the electromagnetic activity of the brain. A new type of MEG, on-scalp MEG, has attracted the attention of researchers recently. Compared to the conventional SQUID-MEG, on-scalp MEG constructed with optically pumped magnetometers is wearable and has a high signal-to-noise ratio. While the co-registration between MEG and magnetic resonance imaging (MRI) significantly influences the source localization accuracy, co-registration error requires assessment, and quantification. Recent studies have evaluated the co-registration error of on-scalp MEG mainly based on the surface fit error or the repeatability error of different measurements, which do not reflect the true co-registration error. In this study, a three-dimensional-printed reference phantom was constructed to provide the ground truth of MEG sensor locations and orientations relative to MRI. The co-registration performances of commonly used three devices-electromagnetic digitization system, structured-light scanner, and laser scanner-were compared and quantified by the indices of final co-registration errors in the reference phantom and human experiments. Furthermore, the influence of the co-registration error on the performance of source localization was analyzed via simulations. The laser scanner had the best co-registration accuracy (rotation error of 0.23° and translation error of 0.76 mm based on the phantom experiment), whereas the structured-light scanner had the best cost performance. The results of this study provide recommendations and precautions for researchers regarding selecting and using an appropriate device for the co-registration of on-scalp MEG and MRI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA