Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 420, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684985

RESUMO

Goats have achieved global prominence as essential livestock since their initial domestication, primarily owing to their remarkable adaptability to diverse environmental and production systems. Differential selection pressures influenced by climate have led to variations in their physical attributes, leaving genetic imprints within the genomes of goat breeds raised in diverse agroecological settings. In light of this, our study pursued a comprehensive analysis, merging environmental data with single nucleotide polymorphism (SNP) variations, to unearth indications of selection shaped by climate-mediated forces in goats. Through the examination of 43,300 SNPs from 51 indigenous goat breeds adapting to different climatic conditions using four analytical methods: latent factor mixed models (LFMM), F-statistics (Fst), Extended haplotype homozygosity across populations (XPEHH), and spatial analysis method (SAM), A total of 74 genes were revealed to display clear signs of selection, which are believed to be influenced by climatic conditions. Among these genes, 32 were consistently identified by at least two of the applied methods, and three genes (DENND1A, PLCB1, and ITPR2) were confirmed by all four approaches. Moreover, our investigation yielded 148 Gene Ontology (GO) terms based on these 74 genes, underlining pivotal biological pathways crucial for environmental adaptation. These pathways encompass functions like vascular smooth muscle contraction, cellular response to heat, GTPase regulator activity, rhythmic processes, and responses to temperature stimuli. Of significance, GO terms about endocrine regulation and energy metabolic responses, key for local adaptation were also uncovered, including biological processes, such as cell differentiation, regulation of peptide hormone secretion, and lipid metabolism. These findings contribute to our knowledge of the genetic structure of climate-triggered adaptation across the goat genome and have practical implications for marker-assisted breeding in goats.


Assuntos
Clima , Genômica , Cabras , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Cabras/genética , Cabras/fisiologia , Genômica/métodos , Adaptação Fisiológica/genética , Cruzamento , Haplótipos
2.
Talanta ; 275: 126067, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640522

RESUMO

The detection of pathogen viability is critically important to evaluate its infectivity. In the study, an integrated microfluidic chip based on dual-mode analytical strategy was developed to rapidly realize detection of bacteria activity (with Salmonella typhimurium, S.T, as a model analyte). Firstly, the composite probes, including deactivated phage modified magnetic beads and nano Pt-antimicrobial peptide (AMP) which can specifically recognize Gram-negative bacteria as nanozyme were prepared. When the composite probes are introduced into the chip together with target bacteria, after enrichment, oscillating and magnetic separation, they will conjugate with S.T and produce a magnetic sandwich complex. The complex can catalyze tetramethylbenzidine (TMB)-H2O2 to produce visible colorimetric signals which is correspondent to the total S.T content. Simultaneously, PtNPs in the complex can produce hydroxyl radical oxidation (∙OH) by decomposing H2O2. Under the synergistic action of ∙OH and AMP, the captured live S.T can be lysed to release ATP and emit bioluminescence signals which corresponds to the live S.T concentration. Therefore, the chip can simultaneously detect and image S.T at different viability in one test. The dual-mode assay demonstrated high sensitivity (≤33 CFU/mL), high specificity (identifying strain), signal amplification (5 folds) and short time (≤40min). The chip array can detect four samples in one test and exhibited advantages of high-integration, -sensitivity, -specificity and miniaturization, which are suitable to rapidly detect and image pathogen's viability in trace level. The replacement of phage probes can detect other bacteria. It has a wide prospect in pathogens screening.


Assuntos
Dispositivos Lab-On-A-Chip , Platina , Salmonella typhimurium , Platina/química , Salmonella typhimurium/isolamento & purificação , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Viabilidade Microbiana , Benzidinas/química , Bacteriófagos/química , Colorimetria/métodos , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA