Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Cell ; 153(3): 562-74, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622241

RESUMO

Translation inhibition is a major but poorly understood mode of action of microRNAs (miRNAs) in plants and animals. In particular, the subcellular location where this process takes place is unknown. Here, we show that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1). AMP1 encodes an integral membrane protein associated with endoplasmic reticulum (ER) and ARGONAUTE1, the miRNA effector and a peripheral ER membrane protein. Large differences in polysome association of miRNA target RNAs are found between wild-type and the amp1 mutant for membrane-bound, but not total, polysomes. This, together with AMP1-independent recruitment of miRNA target transcripts to membrane fractions, shows that miRNAs inhibit the translation of target RNAs on the ER. This study demonstrates that translation inhibition is an important activity of plant miRNAs, reveals the subcellular location of this activity, and uncovers a previously unknown function of the ER.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carboxipeptidases/metabolismo , Retículo Endoplasmático/metabolismo , MicroRNAs/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Carboxipeptidases/genética , Pleiotropia Genética , Mutação , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo
2.
Trends Biochem Sci ; 48(9): 788-800, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393166

RESUMO

Temperature is one of the main environmental cues affecting plant growth and development, and plants have evolved multiple mechanisms to sense and acclimate to high temperature. Emerging research has shown that transcription factors, epigenetic factors, and their coordination are essential for plant temperature responses and the resulting phenological adaptation. Here, we summarize recent advances in molecular and cellular mechanisms to understand how plants acclimate to high temperature and describe how plant meristems sense and integrate environmental signals. Furthermore, we lay out future directions for new technologies to reveal heterogeneous responses in different cell types thus improving plant environmental plasticity.


Assuntos
Desenvolvimento Vegetal , Fatores de Transcrição , Temperatura , Fatores de Transcrição/genética , Plantas/genética , Epigênese Genética
3.
Proc Natl Acad Sci U S A ; 121(6): e2317408121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285953

RESUMO

Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteína-Arginina N-Metiltransferases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Plântula/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Luz
4.
Proc Natl Acad Sci U S A ; 120(44): e2308984120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37874858

RESUMO

Leymus chinensis, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of L. chinensis with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to Psathyrostachys and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in L. chinensis. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild L. chinensis with features such as polyploidization and self-incompatibility.


Assuntos
Melhoramento Vegetal , Poaceae , Poaceae/genética , Genoma , Evolução Molecular
5.
Plant Physiol ; 195(2): 1277-1292, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38431526

RESUMO

Low temperatures occurring at the booting stage in rice (Oryza sativa L.) often result in yield loss by impeding male reproductive development. However, the underlying mechanisms by which rice responds to cold at this stage remain largely unknown. Here, we identified MITOCHONDRIAL ACYL CARRIER PROTEIN 2 (OsMTACP2), the encoded protein of which mediates lipid metabolism involved in the cold response at the booting stage. Loss of OsMTACP2 function compromised cold tolerance, hindering anther cuticle and pollen wall development, resulting in abnormal anther morphology, lower pollen fertility, and seed setting. OsMTACP2 was highly expressed in tapetal cells and microspores during anther development, with the encoded protein localizing to both mitochondria and the cytoplasm. Comparative transcriptomic analysis revealed differential expression of genes related to lipid metabolism between the wild type and the Osmtacp2-1 mutant in response to cold. Through a lipidomic analysis, we demonstrated that wax esters, which are the primary lipid components of the anther cuticle and pollen walls, function as cold-responsive lipids. Their levels increased dramatically in the wild type but not in Osmtacp2-1 when exposed to cold. Additionally, mutants of two cold-induced genes of wax ester biosynthesis, ECERIFERUM1 and WAX CRYSTAL-SPARSE LEAF2, showed decreased cold tolerance. These results suggest that OsMTACP2-mediated wax ester biosynthesis is essential for cold tolerance in rice at the booting stage.


Assuntos
Proteína de Transporte de Acila , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila/genética , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Metabolismo dos Lipídeos/genética , Mutação/genética , Ceras/metabolismo
6.
Mol Cell ; 67(4): 702-710.e4, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28757206

RESUMO

Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5C125S/prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Óxido Nítrico/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cisteína , Regulação da Expressão Gênica de Plantas , Metilação , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteômica/métodos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transdução de Sinais
7.
Nucleic Acids Res ; 51(8): 4000-4011, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912079

RESUMO

Two types of glycyl-tRNA synthetase (GlyRS) are known, the α2 and the α2ß2 GlyRSs. Both types of synthetase employ a class II catalytic domain to aminoacylate tRNAGly. In plastids and some bacteria, the α and ß subunits are fused and are designated as (αß)2 GlyRSs. While the tRNA recognition and aminoacylation mechanisms are well understood for α2 GlyRSs, little is known about the mechanisms for α2ß2/(αß)2 GlyRSs. Here we describe structures of the (αß)2 GlyRS from Oryza sativa chloroplast by itself and in complex with cognate tRNAGly. The set of structures reveals that the U-shaped ß half of the synthetase selects the tRNA in a two-step manner. In the first step, the synthetase engages the elbow and the anticodon base C35 of the tRNA. In the second step, the tRNA has rotated ∼9° toward the catalytic centre. The synthetase probes the tRNA for the presence of anticodon base C36 and discriminator base C73. This intricate mechanism enables the tRNA to access the active site of the synthetase from a direction opposite to that of most other class II synthetases.


Assuntos
Glicina-tRNA Ligase , Glicina-tRNA Ligase/genética , Anticódon , RNA de Transferência de Glicina/química , RNA de Transferência , Plastídeos
8.
Proc Natl Acad Sci U S A ; 119(45): e2206846119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322735

RESUMO

Heat stress limits plant growth, development, and crop yield, but how plant cells precisely sense and transduce heat stress signals remains elusive. Here, we identified a conserved heat stress response mechanism to elucidate how heat stress signal is transmitted from the cytoplasm into the nucleus for epigenetic modifiers. We demonstrate that HISTONE DEACETYLASE 9 (HDA9) transduces heat signals from the cytoplasm to the nucleus to play a positive regulatory role in heat responses in Arabidopsis. Heat specifically induces HDA9 accumulation in the nucleus. Under heat stress, the phosphatase PP2AB'ß directly interacts with and dephosphorylates HDA9 to protect HDA9 from 26S proteasome-mediated degradation, leading to the translocation of nonphosphorylated HDA9 to the nucleus. This heat-induced enrichment of HDA9 in the nucleus depends on the nucleoporin HOS1. In the nucleus, HDA9 binds and deacetylates the target genes related to signaling transduction and plant development to repress gene expression in a transcription factor YIN YANG 1-dependent and -independent manner, resulting in rebalance of plant development and heat response. Therefore, we uncover an HDA9-mediated positive regulatory module in the heat shock signal transduction pathway. More important, this cytoplasm-to-nucleus translocation of HDA9 in response to heat stress is conserved in wheat and rice, which confers the mechanism significant implication potential for crop breeding to cope with global climate warming.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Células Vegetais/metabolismo , Melhoramento Vegetal , Arabidopsis/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
9.
Plant Biotechnol J ; 22(3): 712-721, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37929781

RESUMO

MiRNAs have been reported to be the key regulators involving a wide range of biological processes in diverse plant species, but their functions in switchgrass, an important biofuel and forage crop, are largely unknown. Here, we reported the novel function of miR528, which has expanded to four copies in switchgrass, in controlling biomass trait of tillering number and regrowth rate after mowing. Blocking miR528 activity by expressing short tandem target mimic (STTM) increased tiller number and regrowth rate after mowing. The quadruple pvmir528 mutant lines derived from genome editing also showed such improved traits. Degradome and RNA-seq analysis, combined with in situ hybridization assay revealed that up-regulation of two miR528 targets coding for Cu/Zn-SOD enzymes, might be responsible for the improved traits of tillering and regrowth in pvmir528 mutant. Additionally, natural variations in the miR528-SOD interaction exist in C3 and C4 monocot species, implying the distinct regulatory strength of the miR528-SOD module during monocot evolution. Overall, our data illuminated a novel role of miR528 in controlling biomass traits and provided a new target for genetic manipulation-mediated crop improvement.


Assuntos
Panicum , Panicum/genética , Regulação para Cima , Superóxido Dismutase/genética , Regulação da Expressão Gênica de Plantas/genética
10.
Plant Cell ; 33(1): 66-84, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751089

RESUMO

After double fertilization, zygotic embryogenesis initiates a new life cycle, and stem cell homeostasis in the shoot apical meristem (SAM) and root apical meristem (RAM) allows plants to produce new tissues and organs continuously. Here, we report that mutations in DEAD-BOX RNA HELICASE 27 (RH27) affect zygote division and stem cell homeostasis in Arabidopsis (Arabidopsis thaliana). The strong mutant allele rh27-1 caused a zygote-lethal phenotype, while the weak mutant allele rh27-2 led to minor defects in embryogenesis and severely compromised stem cell homeostasis in the SAM and RAM. RH27 is expressed in embryos from the zygote stage, and in both the SAM and RAM, and RH27 is a nucleus-localized protein. The expression levels of genes related to stem cell homeostasis were elevated in rh27-2 plants, alongside down-regulation of their regulatory microRNAs (miRNAs). Further analyses of rh27-2 plants revealed reduced levels of a large subset of miRNAs and their pri-miRNAs in shoot apices and root tips. In addition, biochemical studies showed that RH27 associates with pri-miRNAs and interacts with miRNA-biogenesis components, including DAWDLE, HYPONASTIC LEAVES 1, and SERRATE. Therefore, we propose that RH27 is a component of the microprocessor complex and is critical for zygote division and stem cell homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/metabolismo , Zigoto/metabolismo
12.
Plant J ; 110(6): 1717-1730, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35403315

RESUMO

In rice (Oryza sativa), the lemma and palea protect the internal organs of the floret,provide nutrients for seed development, and determine grain size. We previously revealed that a trans-acting small interfering RNA targeting AUXIN RESPONSE FACTORS (tasiR-ARF) regulates lemma polarity establishment via post-transcriptional repression of AUXIN RESPONSE FACTORS (ARFs) in rice. TasiR-ARF formation requires RNA-DEPENDENT RNA POLYMERASE 6 (RDR6). However, the underlying molecular mechanism of the tasiR-ARF-ARF regulon in lemma development remains unclear. Here, by genetic screening for suppressors of the thermosensitive mutant osrdr6-1, we identified three suppressors, huifu 1 (hf1), hf9, and hf17. Mapping-by-sequencing revealed that HF1 encodes a MYB transcription factor belonging to the KANADI1 family. The hf1 mutation partially rescued the osrdr6-1 lemma defect but not the defect in tasiR-ARF levels. DNA affinity purification sequencing analysis identified 17 725 OsKANADI1-associated sites, most of which contain the SPBP-box binding motif (RGAATAWW) and are located in the promoter, protein-coding, intron, and intergenic regions. Moreover, we found that OsKANADI1 could directly bind to the intron of OsARF3a in vitro and in vivo and promote OsARF3a expression at the transcriptional level. In addition, hf9 and hf17 are intragenic suppressors containing mutations in OsRDR6 that partially rescue tasiR-ARF levels by restoring OsRDR6 protein levels. Collectively, our results demonstrate that OsKANADI1 and tasiR-ARFs synergistically maintain the proper expression of OsARF3a and thus contribute to rice lemma development.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Mutação , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Plant Physiol ; 190(4): 2637-2650, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35972421

RESUMO

Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5), a highly conserved arginine (Arg) methyltransferase protein, regulates multiple aspects of the growth, development, and environmental stress responses by methylating Arg in histones and some mRNA splicing-related proteins in plants. Hydrogen sulfide (H2S) is a recently characterized gasotransmitter that also regulates various important physiological processes. l-cysteine desulfhydrase (LCD) is a key enzyme of endogenous H2S production. However, our understanding of the upstream regulatory mechanisms of endogenous H2S production is limited in plant cells. Here, we confirmed that AtPRMT5 increases the enzymatic activity of AtLCD through methylation modifications during stress responses. Both atprmt5 and atlcd mutants were sensitive to cadmium (Cd2+), whereas the overexpression (OE) of AtPRMT5 or AtLCD enhanced the Cd2+ tolerance of plants. AtPRMT5 methylated AtLCD at Arg-83, leading to a significant increase in AtLCD enzymatic activity. The Cd2+ sensitivity of atprmt5-2 atlcd double mutants was consistent with that of atlcd plants. When AtPRMT5 was overexpressed in the atlcd mutant, the Cd2+ tolerance of plants was significantly lower than that of AtPRMT5-OE plants in the wild-type background. These results were confirmed in pharmacological experiments. Thus, AtPRMT5 methylation of AtLCD increases its enzymatic activity, thereby strengthening the endogenous H2S signal and ultimately improving plant tolerance to Cd2+ stress. These findings provide further insights into the substrates of AtPRMT5 and increase our understanding of the regulatory mechanism upstream of H2S signals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sulfeto de Hidrogênio , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação , Cistationina gama-Liase/genética , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Arginina/metabolismo
14.
Nat Rev Genet ; 23(5): 262-263, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301484
15.
J Integr Plant Biol ; 65(11): 2416-2420, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37698072

RESUMO

The lack of genome editing platforms has hampered efforts to study and improve forage crops that can be grown on lands not suited to other crops. Here, we established efficient Agrobacterium-mediated clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) genome editing in a perennial, stress-tolerant forage grass, sheepgrass (Leymus chinensis). By screening for active single-guide RNAs (sgRNAs), accessions that regenerate well, suitable Agrobacterium strains, and optimal culture media, and co-expressing the morphogenic factor TaWOX5, we achieved 11% transformation and 5.83% editing efficiency in sheepgrass. Knocking out Teosinte Branched1 (TB1) significantly increased tiller number and biomass. This study opens avenues for studying gene function and breeding in sheepgrass.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Melhoramento Vegetal , Poaceae/genética , Agrobacterium/genética
16.
New Phytol ; 236(5): 1708-1720, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093745

RESUMO

Ribosomal RNAs (rRNAs) undergo many modifications during transcription and maturation; homeostasis of rRNA modifications is essential for chloroplast biogenesis in plants. The chloroplast acts as a hub to sense environmental signals, such as cold temperature. However, how RNA modifications contribute to low temperature responses remains unknown. Here we reveal that pseudouridine (Ψ) modification of rice chloroplast rRNAs mediated by the pseudouridine synthase (OsPUS1) contributes to cold tolerance at seedling stage. Loss-function of OsPUS1 leads to abnormal chloroplast development and albino seedling phenotype at low temperature. We find that OsPUS1 is accumulated upon cold and binds to chloroplast precursor rRNAs (pre-rRNAs) to catalyse the pseudouridylation on rRNA. These modifications on chloroplast rRNAs could be required for their processing, as the reduction of mature chloroplast rRNAs and accumulation of pre-rRNAs are observed in ospus1-1 at low temperature. Therefore, the ribosome activity and translation in chloroplasts is disturbed in ospus1-1. Furthermore, transcriptome and translatome analysis reveals that OsPUS1 balances growth and stress-responsive state, preventing excess reactive oxygen species accumulation. Taken together, our findings unveil a crucial function of Ψ in chloroplast ribosome biogenesis and cold tolerance in rice, with potential applications in crop improvement.


Assuntos
Aclimatação , Oryza , RNA Ribossômico , Cloroplastos/metabolismo , Oryza/genética , Oryza/fisiologia , Ribossomos/metabolismo , RNA de Cloroplastos , RNA Ribossômico/genética , Plântula/fisiologia , Temperatura
17.
Plant Cell ; 31(2): 430-443, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30712008

RESUMO

Leaf senescence is governed by a complex regulatory network involving the dynamic reprogramming of gene expression. Age-dependent induction of senescence-associated genes (SAGs) is associated with increased levels of trimethylation of histone H3 at Lys4 (H3K4me3), but the regulatory mechanism remains elusive. Here, we found that JMJ16, an Arabidopsis (Arabidopsis thaliana) JmjC-domain containing protein, is a specific H3K4 demethylase that negatively regulates leaf senescence through its enzymatic activity. Genome-wide analysis revealed a widespread coordinated upregulation of gene expression and hypermethylation of H3K4me3 at JMJ16 binding genes associated with leaf senescence in the loss-of-function jmj16 mutant as compared with the wild type. Genetic analysis indicated that JMJ16 negatively regulates leaf senescence, at least partly through repressing the expression of positive regulators of leaf senescence, WRKY53 and SAG201 JMJ16 associates with WRKY53 and SAG201 and represses their precocious expression in mature leaves by reducing H3K4me3 levels at these loci. The protein abundance of JMJ16 gradually decreases during aging, which is correlated with increased H3K4me3 levels at WRKY53 and SAG201, suggesting that the age-dependent downregulation of JMJ16 is required for the precise transcriptional activation of SAGs during leaf senescence. Thus, JMJ16 is an important regulator of leaf senescence that demethylates H3K4 at SAGs in an age-dependent manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição/genética
18.
Angew Chem Int Ed Engl ; 61(25): e202203327, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35411713

RESUMO

Scalable and eco-friendly synthesis of crystalline porous covalent triazine frameworks (CTFs) is essential to realize their broad industrial applications but remains a great challenge, which requires the fundamental understanding of the two-dimensional polymerization mechanism. Herein, we report a universal polyphosphoric acid (H6 P4 O13 )-catalyzed nitrile trimerization route to synthesize a series of highly crystalline CTFs with high specific surface areas. This new strategy enables the cost-effective large-scale fabrication of crystalline CTFs at kilogram level for the first time. Through density functional theory calculation and detailed controlled experiments, we reveal that the polyphosphate acid show much higher catalytic activity for trimerization reaction than its analogues such as P2 O5 and H3 PO4 . Furthermore, the crystalline CTFs with regular porosity and abundant triazine groups exhibit ultrahigh removal efficiency of micropollutants, indicating its great potential in environment remediation.

19.
Plant Cell ; 30(1): 167-177, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233856

RESUMO

In chromatin, histone methylation affects the epigenetic regulation of multiple processes in animals and plants and is modulated by the activities of histone methyltransferases and histone demethylases. The jumonji domain-containing histone demethylases have diverse functions and can be classified into several subfamilies. In humans, the jumonji domain-containing Lysine (K)-Specific Demethylase 5/Jumonji and ARID Domain Protein (KDM5/JARID) subfamily demethylases are specific for histone 3 lysine 4 trimethylation (H3K4me3) and are important drug targets for cancer treatment. In Arabidopsis thaliana, the KDM5/JARID subfamily H3K4me3 demethylase JUMONJI14 (JMJ14) plays important roles in flowering, gene silencing, and DNA methylation. Here, we report the crystal structures of the JMJ14 catalytic domain in both substrate-free and bound forms. The structures reveal that the jumonji and C5HC2 domains contribute to the specific recognition of the H3R2 and H3Q5 to facilitate H3K4me3 substrate specificity. The critical acidic residues are conserved in plants and animals with the corresponding mutations impairing the enzyme activity of both JMJ14 and human KDM5B, indicating a common substrate recognition mechanism for KDM5 subfamily demethylases shared by plants and animals and further informing efforts to design targeted inhibitors of human KDM5.


Assuntos
Proteínas de Arabidopsis/metabolismo , Histona Desmetilases/metabolismo , Histonas/química , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Domínio Catalítico , Sequência Conservada , Humanos , Lisina/metabolismo , Metilação , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
20.
J Integr Plant Biol ; 63(8): 1399-1409, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34114725

RESUMO

Processing of mature transfer RNAs (tRNAs) produces complex populations of tRNA-derived fragments (tRFs). Emerging evidence shows that tRFs have important functions in bacteria, animals, and plants. Here, we review recent advances in understanding plant tRFs, focusing on their biological and cellular functions, such as regulating stress responses, mediating plant-pathogen interactions, and modulating post-transcriptional gene silencing and translation. We also review sequencing strategies and bioinformatics resources for studying tRFs in plants. Finally, we discuss future directions for plant tRF research, which will expand our knowledge of plant non-coding RNAs.


Assuntos
RNA de Plantas/biossíntese , RNA de Transferência/biossíntese , Animais , Modelos Biológicos , RNA de Plantas/química , RNA de Plantas/genética , RNA de Transferência/química , RNA de Transferência/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA